IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/41624.html
   My bibliography  Save this paper

Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis

Author

Listed:
  • Khalfaoui, R
  • Boutahar, M

Abstract

We analyzed the volatility dynamics of three developed markets (U.K., U.S. and Japan), during the period 2003-2011, by comparing the performance of several multivariate volatility models, namely Constant Conditional Correlation (CCC), Dynamic Conditional Correlation (DCC) and consistent DCC (cDCC) models. To evaluate the performance of models we used four statistical loss functions on the daily Value-at-Risk (VaR) estimates of a diversified portfolio in three stock indices: FTSE 100, S&P 500 and Nikkei 225. We based on one-day ahead conditional variance forecasts. To assess the performance of the abovementioned models and to measure risks over different time-scales, we proposed a wavelet-based approach which decomposes a given time series on different time horizons. Wavelet multiresolution analysis and multivariate conditional volatility models are combined for volatility forecasting to measure the comovement between stock market returns and to estimate daily VaR in the time-frequency space. Empirical results shows that the asymmetric cDCC model of Aielli (2008) is the most preferable according to statistical loss functions under raw data. The results also suggest that wavelet-based models increase predictive performance of financial forecasting in low scales according to number of violations and failure probabilities for VaR models.

Suggested Citation

  • Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41624
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/41624/1/MPRA_paper_41624.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    7. Chang, Chia-Lin & Khamkaew, Thanchanok & McAleer, Michael & Tansuchat, Roengchai, 2011. "Modelling conditional correlations in the volatility of Asian rubber spot and futures returns," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1482-1490.
    8. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    9. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    10. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    11. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
    12. Chiang, Thomas C. & Jeon, Bang Nam & Li, Huimin, 2007. "Dynamic correlation analysis of financial contagion: Evidence from Asian markets," Journal of International Money and Finance, Elsevier, vol. 26(7), pages 1206-1228, November.
    13. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CIRJE F-Series CIRJE-F-638, CIRJE, Faculty of Economics, University of Tokyo.
    14. Rua, António, 2010. "Measuring comovement in the time-frequency space," Journal of Macroeconomics, Elsevier, vol. 32(2), pages 685-691, June.
    15. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    16. Kin-Yip Ho & Albert K. Tsui & Zhaoyong Zhang, 2009. "Volatility Dynamics of the UK Business Cycle: a Multivariate Asymmetric Garch Approach," Economie Internationale, CEPII research center, issue 117, pages 31-46.
    17. Arouri, Mohamed El Hedi & Lahiani, Amine & Nguyen, Duc Khuong, 2011. "Return and volatility transmission between world oil prices and stock markets of the GCC countries," Economic Modelling, Elsevier, vol. 28(4), pages 1815-1825, July.
    18. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    19. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    20. Masih, Mansur & Alzahrani, Mohammed & Al-Titi, Omar, 2010. "Systematic risk and time scales: New evidence from an application of wavelet approach to the emerging Gulf stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 10-18, January.
    21. Büttner, David & Hayo, Bernd, 2011. "Determinants of European stock market integration," Economic Systems, Elsevier, vol. 35(4), pages 574-585.
    22. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    23. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    24. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    25. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    26. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    27. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    28. Kim Sangbae & In Francis Haeuck, 2003. "The Relationship Between Financial Variables and Real Economic Activity: Evidence From Spectral and Wavelet Analyses," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-18, December.
    29. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    30. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    31. Kenourgios, Dimitris & Samitas, Aristeidis & Paltalidis, Nikos, 2011. "Financial crises and stock market contagion in a multivariate time-varying asymmetric framework," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 92-106, February.
    32. Palandri, Alessandro, 2009. "Sequential conditional correlations: Inference and evaluation," Journal of Econometrics, Elsevier, vol. 153(2), pages 122-132, December.
    33. Lahrech, Abdelmounaim & Sylwester, Kevin, 2011. "U.S. and Latin American stock market linkages," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1341-1357.
    34. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    35. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    36. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    37. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    38. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    39. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    40. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2020. "The effects of investor emotions sentiments on crude oil returns: A time and frequency dynamics analysis," International Economics, Elsevier, vol. 162(C), pages 110-124.
    2. Teply, Petr & Kvapilikova, Ivana, 2017. "Measuring systemic risk of the US banking sector in time-frequency domain," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 461-472.
    3. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    4. Meng, Xiangcai & Huang, Chia-Hsing, 2019. "The time-frequency co-movement of Asian effective exchange rates: A wavelet approach with daily data," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 131-148.
    5. Bianconi, Marcelo & Yoshino, Joe A., 2014. "Risk factors and value at risk in publicly traded companies of the nonrenewable energy sector," Energy Economics, Elsevier, vol. 45(C), pages 19-32.
    6. Maghyereh, Aktham I. & Abdoh, Hussein & Awartani, Basel, 2019. "Connectedness and hedging between gold and Islamic securities: A new evidence from time-frequency domain approaches," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 13-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    2. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    5. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    6. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    7. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    8. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 15(4), pages 649-677.
    9. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    13. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    14. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    15. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    16. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 14(7), pages 1-46, June.
    17. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    18. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    19. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    20. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    21. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Keywords

    Dynamic conditional correlations; Value-at-Risk; wavelet decomposition; Stock prices;
    All these keywords.

    JEL classification:

    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41624. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.