IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?

  • Wang, Yudong
  • Wu, Chongfeng
Registered author(s):

    In this paper, we forecast energy market volatility using both univariate and multivariate GARCH-class models. First, we forecast volatilities of individual assets and find that multivariate models display better performance than univariate models. Second, we forecast crack spread volatility and contrast the performance of multivariate models for two underlyings, with the alternative of univariate ones for crack spreads directly. Our evidence shows that univariate models allowing for asymmetric effects display the greatest accuracy. We also discuss the hedging strategy based on multivariate models and its implications for market participants.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988312000540
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Economics.

    Volume (Year): 34 (2012)
    Issue (Month): 6 ()
    Pages: 2167-2181

    as
    in new window

    Handle: RePEc:eee:eneeco:v:34:y:2012:i:6:p:2167-2181
    DOI: 10.1016/j.eneco.2012.03.010
    Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    2. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CARF F-Series CARF-F-162, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Yuan-Hung Hsu Ku & Ho-Chyuan Chen & Kuang-Hua Chen, 2007. "On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 503-509.
    4. Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2010. "Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH," CIRJE F-Series CIRJE-F-704, CIRJE, Faculty of Economics, University of Tokyo.
    5. Ledoit, Olivier & Santa-Clara, Pedro & Wolf, Michael, 1999. "Flexible Multivariate GARCH Modeling With an Application to International Stock Markets," University of California at Los Angeles, Anderson Graduate School of Management qt93s6p8gb, Anderson Graduate School of Management, UCLA.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
    7. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    8. Chang, Chiao-Yi & Lai, Jing-Yi & Chuang, I-Yuan, 2010. "Futures hedging effectiveness under the segmentation of bear/bull energy markets," Energy Economics, Elsevier, vol. 32(2), pages 442-449, March.
    9. Steffen Mahringer & Marcel Prokopczuk, 2010. "An Empirical Model Comparison for Valuing Crack Spread Options," ICMA Centre Discussion Papers in Finance icma-dp2010-01, Henley Business School, Reading University.
    10. Elder, John & Serletis, Apostolos, 2009. "Oil price uncertainty in Canada," Energy Economics, Elsevier, vol. 31(6), pages 852-856, November.
    11. Jose A. Lopez, 1995. "Evaluating the predictive accuracy of volatility models," Research Paper 9524, Federal Reserve Bank of New York.
    12. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2010. "Analyzing and Forecasting Volatility Spillovers, Asymmetries and Hedging in Major Oil Markets," Working Papers in Economics 10/19, University of Canterbury, Department of Economics and Finance.
    13. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    14. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
    15. Matteo Manera & Alessandro Lanza & Michael McAleer, 2004. "Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns," Working Papers 2004.72, Fondazione Eni Enrico Mattei.
    16. Severin Borenstein & A. Colin Cameron & Richard Gilbert, 1997. "Do Gasoline Prices Respond Asymmetrically to Crude Oil Price Changes?," The Quarterly Journal of Economics, Oxford University Press, vol. 112(1), pages 305-339.
    17. Severin Borenstein & Andrea Shepard, 1996. "Sticky Prices, Inventories, and Market Power in Wholesale Gasoline Markets," NBER Working Papers 5468, National Bureau of Economic Research, Inc.
    18. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    19. GIOT, Pierre & LAURENT, Sébastien, . "Market risk in commodity markets: a VaR approach," CORE Discussion Papers RP 1682, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
    21. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    22. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    23. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    24. Amir Alizadeh & Manolis Kavussanos & David Menachof, 2004. "Hedging against bunker price fluctuations using petroleum futures contracts: constant versus time-varying hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1337-1353.
    25. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    26. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    27. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    28. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    29. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    30. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-24, April-Jun.
    31. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    32. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    33. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    34. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    35. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    36. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-48, April.
    37. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
    38. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
    39. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
    40. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    41. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    42. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.
    43. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    44. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    45. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    46. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    47. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    48. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    49. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    50. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    51. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    52. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    53. Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
    54. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
    55. Bahram Adrangi & A. Chatrath & Frank Song & Ferenc Szidarovszky, 2006. "Petroleum spreads and the term structure of futures prices," Applied Economics, Taylor & Francis Journals, vol. 38(16), pages 1917-1929.
    56. Narayan, Paresh Kumar & Narayan, Seema, 2007. "Modelling oil price volatility," Energy Policy, Elsevier, vol. 35(12), pages 6549-6553, December.
    57. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:6:p:2167-2181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.