IDEAS home Printed from
   My bibliography  Save this article

A New Approach to Markov-Switching GARCH Models


  • Markus Haas


The use of Markov-switching models to capture the volatility dynamics of financial time series has grown considerably during past years, in part because they give rise to a plausible interpretation of nonlinearities. Nevertheless, GARCH-type models remain ubiquitous in order to allow for nonlinearities associated with time-varying volatility. Existing methods of combining the two approaches are unsatisfactory, as they either suffer from severe estimation difficulties or else their dynamic properties are not well understood. In this article we present a new Markov-switching GARCH model that overcomes both of these problems. Dynamic properties are derived and their implications for the volatility process discussed. We argue that the disaggregation of the variance process offered by the new model is more plausible than in the existing variants. The approach is illustrated with several exchange rate return series. The results suggest that a promising volatility model is an independent switching GARCH process with a possibly skewed conditional mixture density. Copyright 2004, Oxford University Press.

Suggested Citation

  • Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
  • Handle: RePEc:oup:jfinec:v:2:y:2004:i:4:p:493-530

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:2:y:2004:i:4:p:493-530. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.