IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v28y2006i4p467-488.html
   My bibliography  Save this article

Modeling and forecasting petroleum futures volatility

Author

Listed:
  • Sadorsky, Perry

Abstract

No abstract is available for this item.

Suggested Citation

  • Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
  • Handle: RePEc:eee:eneeco:v:28:y:2006:i:4:p:467-488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(06)00048-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    2. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    3. Peter Ferderer, J., 1996. "Oil price volatility and the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 1-26.
    4. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    5. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    6. Cumby, Robert E. & Modest, David M., 1987. "Testing for market timing ability : A framework for forecast evaluation," Journal of Financial Economics, Elsevier, vol. 19(1), pages 169-189, September.
    7. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    8. Meade, Nigel, 2002. "A comparison of the accuracy of short term foreign exchange forecasting methods," International Journal of Forecasting, Elsevier, vol. 18(1), pages 67-83.
    9. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    10. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    11. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Michael McKenzie & Heather Mitchell, 2002. "Generalized asymmetric power ARCH modelling of exchange rate volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 12(8), pages 555-564.
    17. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    18. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    19. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    20. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    21. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
    22. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    23. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    24. Kiseok Lee & Shawn Ni & Ronald A. Ratti, 1995. "Oil Shocks and the Macroeconomy: The Role of Price Variability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 39-56.
    25. Mike So & K. Lam & W. K. Li, 1999. "Forecasting exchange rate volatility using autoregressive random variance model," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 583-591.
    26. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    27. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    28. Sadorsky, Perry, 2003. "The macroeconomic determinants of technology stock price volatility," Review of Financial Economics, Elsevier, vol. 12(2), pages 191-205.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415.
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    5. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    6. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    7. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    8. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
    9. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
    10. Auer, Benjamin R., 2014. "Daily seasonality in crude oil returns and volatilities," Energy Economics, Elsevier, vol. 43(C), pages 82-88.
    11. Sadorsky, Perry, 2002. "Time-varying risk premiums in petroleum futures prices," Energy Economics, Elsevier, vol. 24(6), pages 539-556, November.
    12. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
    13. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    14. Trino-Manuel Ñíguez, 2003. "Volatility And Var Forecasting For The Ibex-35 Stock-Return Index Using Figarch-Type Processes And Different Evaluation Criteria," Working Papers. Serie AD 2003-33, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    15. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    16. Stéphane Yen & Ming-Hsiang Chen, 2010. "Open interest, volume, and volatility: evidence from Taiwan futures markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 34(2), pages 113-141, April.
    17. Eskandar A. Tooma, 2003. "Modeling and Forecasting Egyptian Stock Market Volatility Before and After Price Limits," Working Papers 0310, Economic Research Forum, revised 04 Mar 2003.
    18. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    19. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
    21. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:28:y:2006:i:4:p:467-488. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.