IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Predictive Ability of Several Models of Exchange Rate Volatility

  • West, K.D.
  • Cho, D.

We compare the out-of-sample forecasting performance of univariate homoskedastic, GARCH, autoregressive and nonparametric models for conditional variances, using five bilateral weekly exchange rates for the dollar, 1973-1989. For a one week horizon, GARCH models tend to make slightly more accurate forecasts. For longer horizons, it is difficult to find grounds for choosing between the various models. None of the models perform well in a conventional test of forecast efficiency.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Wisconsin Madison - Social Systems in its series Working papers with number 9317.

in new window

Length: 23 pages
Date of creation: 1993
Date of revision:
Handle: RePEc:att:wimass:9317
Contact details of provider: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," Review of Economic Studies, Oxford University Press, vol. 58(3), pages 603-619.
  2. Joseph G. Haubrich & Andrew W. Lo, . "The Sources and Nature of Long-Term Memory in the Business Cycle," Rodney L. White Center for Financial Research Working Papers 5-89, Wharton School Rodney L. White Center for Financial Research.
  3. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  4. Pagan, Adrian R. & Schwert, G. William, 1990. "Testing for covariance stationarity in stock market data," Economics Letters, Elsevier, vol. 33(2), pages 165-170, June.
  5. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
  6. Newey, W.K. & West, K.D., 1992. "Automatic Lag Selection in Covariance Matrix Estimation," Working papers 9220, Wisconsin Madison - Social Systems.
  7. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  8. Robert F. Engle & Che-Hsiung Hong & Alex Kane, 1990. "Valuation of Variance Forecast with Simulated Option Markets," NBER Working Papers 3350, National Bureau of Economic Research, Inc.
  9. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
  10. Schwert, G.W., 1988. "Business Cycles, Financial Crises And Stock Volatility," Papers 88-06, Rochester, Business - General.
  11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  12. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  13. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  14. Francis X. Diebold & James M. Nason, 1989. "Nonparametric exchange rate prediction?," Finance and Economics Discussion Series 81, Board of Governors of the Federal Reserve System (U.S.).
  15. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  17. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
  18. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
  19. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
  20. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
  21. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
  22. G. William Schwert, 1988. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  23. William Schwert, G., 1989. "Business cycles, financial crises, and stock volatility : Reply to Shiller," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 31(1), pages 133-137, January.
  24. Ray Chou & Robert F. Engle & Alex Kane, 1991. "Measuring Risk Aversion From Excess Returns on a Stock Index," NBER Working Papers 3643, National Bureau of Economic Research, Inc.
  25. Francis X. Diebold & Roberto S. Mariano, 1991. "Comparing predictive accuracy I: an asymptotic test," Discussion Paper / Institute for Empirical Macroeconomics 52, Federal Reserve Bank of Minneapolis.
  26. Neil R. Ericsson & Jaime R. Marquez, 1989. "Exact and approximate multi-period mean-square forecast errors for dynamic econometric models," International Finance Discussion Papers 348, Board of Governors of the Federal Reserve System (U.S.).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:att:wimass:9317. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ailsenne Sumwalt)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.