IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v81y2019icp1132-1147.html
   My bibliography  Save this article

Crude oil price shocks and hedging performance: A comparison of volatility models

Author

Listed:
  • Chun, Dohyun
  • Cho, Hoon
  • Kim, Jihun

Abstract

From a practical perspective, it is crucial to hedge the crude oil price risk in periods of dramatic price change. In this study, we directly investigate the performance of crude oil hedge portfolios in the five periods in which the largest oil price shocks in history occurred. We use stochastic volatility (SV), GARCH, and the diagonal BEKK model to estimate the minimum variance hedge ratio of hedge portfolios. Our empirical results provide evidence that hedging strategies based on the SV model are able to outperform the GARCH and BEKK models in terms of variance reduction. Our results are also consistently valid for various hedge horizons. Interestingly, although it is important to estimate variance and covariance accurately when constructing minimum variance portfolios, we find that reducing the mean squared and mean absolute errors does not guarantee superior hedge performance.

Suggested Citation

  • Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
  • Handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:1132-1147
    DOI: 10.1016/j.eneco.2019.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319301860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    4. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2010. "Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets," Econometric Institute Research Papers EI 2010-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    6. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    7. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    8. Donald Lien & Keshab Shrestha, 2007. "An empirical analysis of the relationship between hedge ratio and hedging horizon using wavelet analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(2), pages 127-150, February.
    9. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    10. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    11. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    12. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    13. Asim Ghosh, 1993. "Cointegration and error correction models: Intertemporal causality between index and futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 193-198, April.
    14. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    15. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    16. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    17. Matteo Manera & Michael McAleer & Margherita Grasso, 2006. "Modelling time-varying conditional correlations in the volatility of Tapis oil spot and forward returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(7), pages 525-533.
    18. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    19. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    20. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    21. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    22. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    23. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    24. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    25. Berry Wilson & Reena Aggarwal & Carla Inclan, 1996. "Detecting volatility changes across the oil sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(3), pages 313-330, May.
    26. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    27. Mr. James Daniel, 2001. "Hedging Government Oil Price Risk," IMF Working Papers 2001/185, International Monetary Fund.
    28. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    29. Lanza, Alessandro & Manera, Matteo & McAleer, Michael, 2006. "Modeling dynamic conditional correlations in WTI oil forward and futures returns," Finance Research Letters, Elsevier, vol. 3(2), pages 114-132, June.
    30. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    31. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    32. Charles S. Bos & Phillip Gould, 2007. "Dynamic Correlations and Optimal Hedge Ratios," Tinbergen Institute Discussion Papers 07-025/4, Tinbergen Institute.
    33. Amir Alizadeh & Manolis Kavussanos & David Menachof, 2004. "Hedging against bunker price fluctuations using petroleum futures contracts: constant versus time-varying hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1337-1353.
    34. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    35. Ahmad R. Jalali‐Naini & Maryam Kazemi Manesh, 2006. "Price volatility, hedging and variable risk premium in the crude oil market," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 30(2), pages 55-70, June.
    36. Wang, Gang-Jin & Xie, Chi & He, Ling-Yun & Chen, Shou, 2014. "Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 70-79.
    37. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    38. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    39. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    40. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    41. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    42. Robert J. Myers, 1991. "Estimating time‐varying optimal hedge ratios on futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 39-53, February.
    43. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    44. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    45. Christos Floros & Dimitrios Vougas, 2004. "Hedge ratios in Greek stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(15), pages 1125-1136.
    46. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    47. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    48. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    49. Bina Cyrus & Vo Minh, 2007. "OPEC in the Epoch of Globalization: An Event Study of Global Oil Prices," Global Economy Journal, De Gruyter, vol. 7(1), pages 1-52, February.
    50. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    51. Donald Lien & Yiu Kuen Tse, 1998. "Hedging time‐varying downside risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(6), pages 705-722, September.
    52. Symeonidis, Lazaros & Prokopczuk, Marcel & Brooks, Chris & Lazar, Emese, 2012. "Futures basis, inventory and commodity price volatility: An empirical analysis," Economic Modelling, Elsevier, vol. 29(6), pages 2651-2663.
    53. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    54. Narayan, Paresh Kumar & Narayan, Seema, 2007. "Modelling oil price volatility," Energy Policy, Elsevier, vol. 35(12), pages 6549-6553, December.
    55. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    56. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    57. Enrique Salvador & Vicent Aragó, 2014. "Measuring Hedging Effectiveness of Index Futures Contracts: Do Dynamic Models Outperform Static Models? A Regime‐Switching Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 374-398, April.
    58. Figlewski, Stephen, 1984. "Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-669, July.
    59. Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
    60. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    61. Maslyuk, Svetlana & Smyth, Russell, 2009. "Cointegration between oil spot and future prices of the same and different grades in the presence of structural change," Energy Policy, Elsevier, vol. 37(5), pages 1687-1693, May.
    62. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    2. Furió, Dolores & Torró, Hipòlit, 2020. "Optimal hedging under biased energy futures markets," Energy Economics, Elsevier, vol. 88(C).
    3. Kumar, Sourabh & Kumar Barua, Mukesh, 2022. "Modeling and investigating the interaction among risk factors of the sustainable petroleum supply chain," Resources Policy, Elsevier, vol. 79(C).
    4. Alaba, Oluwayemisi O. & Ojo, Oluwadare O. & Yaya, OlaOluwa S & Abu, Nurudeen & Ajobo, Saheed A., 2021. "Comparative Analysis of Market Efficiency and Volatility of Energy Prices Before and During COVID-19 Pandemic Periods," MPRA Paper 109825, University Library of Munich, Germany.
    5. Zainudin, Ahmad Danial & Mohamad, Azhar, 2021. "Cross hedging with stock index futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 128-144.
    6. You‐How Go & Jia‐Jun Teo & Kam Fong Chan, 2023. "The effectiveness of crude oil futures hedging during infectious disease outbreaks in the 21st century," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1559-1575, November.
    7. Yingying Xu & Donald Lien, 2022. "Forecasting volatilities of oil and gas assets: A comparison of GAS, GARCH, and EGARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 259-278, March.
    8. Su, Kuangxi & Yao, Yinhong & Zheng, Chengli & Xie, Wenzhao, 2023. "A novel hybrid strategy for crude oil future hedging based on the combination of three minimum-CVaR models," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 35-50.
    9. Ming Ma & Jing Zhang, 2023. "RETRACTED ARTICLE: A Bayesian analysis based on multivariate stochastic volatility model: evidence from green stocks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-14, January.
    10. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    2. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    3. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    4. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    6. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    7. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    8. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    9. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    10. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    11. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    12. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    13. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    14. Aragó, Vicent & Salvador, Enrique, 2011. "Sudden changes in variance and time varying hedge ratios," European Journal of Operational Research, Elsevier, vol. 215(2), pages 393-403, December.
    15. Shashi Gupta & Himanshu Choudhary & D.R. Agarwal, 2017. "Hedging Efficiency of Indian Commodity Futures," Paradigm, , vol. 21(1), pages 1-20, June.
    16. Chang, Chiao-Yi & Lai, Jing-Yi & Chuang, I-Yuan, 2010. "Futures hedging effectiveness under the segmentation of bear/bull energy markets," Energy Economics, Elsevier, vol. 32(2), pages 442-449, March.
    17. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    18. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    19. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    20. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.

    More about this item

    Keywords

    Crude oil prices; Hedging strategies; Minimum variance hedge ratio; Stochastic volatility model; Crude oil price shocks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:1132-1147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.