IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/201407.html
   My bibliography  Save this paper

Markov Switching GARCH models for Bayesian Hedging on Energy Futures Markets

Author

Listed:
  • Roberto Casarin

    (Department of Economics, University of Venice C� Foscari)

  • Monica Billio

    (Department of Economics, University of Venice, C� Foscari)

  • Anthony Osuntuyi

    (Department of Mathematics, Obafemi Awolowo University)

Abstract

A new Bayesian multi-chain Markov Switching GARCH model for dynamic hedging in energy futures markets is developed by constructing a system of simultaneous equations for the return dynamics on the hedged portfolio and futures. More specifically, both the mean and variance of the hedged portfolio are assumed to be governed by two unobserved discrete state processes, while the futures dynamics is driven by a univariate hidden state process. The noise in both processes are characterized by a MS-GARCH model. This formulation has two main practical and conceptual advantages. First, the different states of the discrete processes can be identified as different volatility regimes. Secondly, the parameters can be easily interpreted as different hedging components. Our formulation also provides an avenue to analyze the contribution of the volatility dynamics and state probabilities to the optimal hedge ratio at each point in time. Moreover, the combination of the expected utility framework with regime-switching models allows the definition of a robust minimum variance hedging strategy to also account for parameter uncertainty. Evidence of changes in the optimal hedging strategies before and after the financial crisis is found when the proposed robust hedging strategy is applied to crude oil spot and futures markets.

Suggested Citation

  • Roberto Casarin & Monica Billio & Anthony Osuntuyi, 2014. "Markov Switching GARCH models for Bayesian Hedging on Energy Futures Markets," Working Papers 2014:07, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2014:07
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2014/WP_DSE_billio_casarin_osuntuyi_07_14.pdf
    File Function: First version, anno
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    2. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
    3. repec:dau:papers:123456789/14980 is not listed on IDEAS
    4. Monica Billio & Silvio Di Sanzo, 2015. "Granger-causality in Markov switching models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 956-966, May.
    5. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    6. Yu‐Sheng Lai & Her‐Jiun Sheu & Hsiang‐Tai Lee, 2017. "A Multivariate Markov Regime‐Switching High‐Frequency‐Based Volatility Model for Optimal Futures Hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1124-1140, November.
    7. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    8. Sergio H. Lence & Dermot J. Hayes, 1994. "The Empirical Minimum-Variance Hedge," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(1), pages 94-104.
    9. Hsiang‐Tai Lee & Jonathan Yoder, 2007. "Optimal hedging with a regime‐switching time‐varying correlation GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 495-516, May.
    10. Creti, Anna & Joëts, Marc & Mignon, Valérie, 2013. "On the links between stock and commodity markets' volatility," Energy Economics, Elsevier, vol. 37(C), pages 16-28.
    11. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    12. Lence, Sergio H & Hayes, Dermot J, 1994. "Parameter-Based Decision Making under Estimation Risk: An Application to Futures Trading," Journal of Finance, American Finance Association, vol. 49(1), pages 345-357, March.
    13. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    14. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    15. Lien, Donald, 2009. "A note on the hedging effectiveness of GARCH models," International Review of Economics & Finance, Elsevier, vol. 18(1), pages 110-112, January.
    16. Nakatsuma Teruo, 1998. "A Markov-Chain Sampling Algorithm for GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-13, July.
    17. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    18. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    19. Amir Alizadeh & Nikos Nomikos, 2004. "A Markov regime switching approach for hedging stock indices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(7), pages 649-674, July.
    20. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    21. Peter S. Sephton, 1998. "GARCH and MARKOV Hedging at the Winnipeg Commodity Exchange," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 46(2), pages 117-126, July.
    22. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
    23. David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, December.
    24. Donald Lien, 2005. "A note on the superiority of the OLS hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(11), pages 1121-1126, November.
    25. Robert J. Myers, 1991. "Estimating time‐varying optimal hedge ratios on futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 39-53, February.
    26. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    27. Hsiang‐Tai Lee & Jonathan K. Yoder & Ron C. Mittelhammer & Jill J. McCluskey, 2006. "A random coefficient autoregressive Markov regime switching model for dynamic futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(2), pages 103-129, February.
    28. Kadane, Joseph B. & Lazar, Nicole A., 2004. "Methods and Criteria for Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 279-290, January.
    29. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    30. Cifarelli, Giulio & Paladino, Giovanna, 2015. "A dynamic model of hedging and speculation in the commodity futures markets," Journal of Financial Markets, Elsevier, vol. 25(C), pages 1-15.
    31. Bhar, Ramaprasad & Hammoudeh, Shawkat, 2011. "Commodities and financial variables: Analyzing relationships in a changing regime environment," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 469-484, October.
    32. Wang, Yudong & Wu, Chongfeng, 2012. "Energy prices and exchange rates of the U.S. dollar: Further evidence from linear and nonlinear causality analysis," Economic Modelling, Elsevier, vol. 29(6), pages 2289-2297.
    33. Philip, Dennis & Shi, Yukun, 2016. "Optimal hedging in carbon emission markets using Markov regime switching models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 1-15.
    34. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    35. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    36. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    37. Chang, Chiao-Yi & Lai, Jing-Yi & Chuang, I-Yuan, 2010. "Futures hedging effectiveness under the segmentation of bear/bull energy markets," Energy Economics, Elsevier, vol. 32(2), pages 442-449, March.
    38. Yu‐Sheng Lai & Donald Lien, 2017. "A Bivariate High‐Frequency‐Based Volatility Model for Optimal Futures Hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(9), pages 913-929, September.
    39. Her‐Jiun Sheu & Hsiang‐Tai Lee, 2014. "Optimal Futures Hedging Under Multichain Markov Regime Switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(2), pages 173-202, February.
    40. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Zhang & Zhengning Pu & Qin Zhou, 2018. "Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Zhang Yue & Arash Farnoosh, 2018. "Analysing the Dynamic Impact of Electricity Futures on Revenue and Risks of Renewable Energy in China," Working Papers hal-03188814, HAL.
    4. Amaro, Raphael & Pinho, Carlos & Madaleno, Mara, 2022. "Forecasting the Value-at-Risk of energy commodities: A comparison of models and alternative distribution functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 77-101.
    5. Carol Alexander & Jun Deng & Bin Zou, 2021. "Hedging with Bitcoin Futures: The Effect of Liquidation Loss Aversion and Aggressive Trading," Papers 2101.01261, arXiv.org, revised Aug 2021.
    6. Alexander, Carol & Deng, Jun & Zou, Bin, 2023. "Hedging with automatic liquidation and leverage selection on bitcoin futures," European Journal of Operational Research, Elsevier, vol. 306(1), pages 478-493.
    7. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    8. Zhu, Pengfei & Lu, Tuantuan & Chen, Shenglan, 2022. "How do crude oil futures hedge crude oil spot risk after the COVID-19 outbreak? A wavelet denoising-GARCHSK-SJC Copula hedge ratio estimation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Yu, Xing & Li, Yanyan & Lu, Junli & Shen, Xilin, 2023. "Futures hedging in crude oil markets: A trade-off between risk and return," Resources Policy, Elsevier, vol. 80(C).
    10. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    11. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    12. Liu, Fang & Umair, Muhammad & Gao, Junjun, 2023. "Assessing oil price volatility co-movement with stock market volatility through quantile regression approach," Resources Policy, Elsevier, vol. 81(C).
    13. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
    14. Cui, Yan & Feng, Yun, 2020. "Composite hedge and utility maximization for optimal futures hedging," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 15-32.
    15. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    16. Gonzato, Luca & Sgarra, Carlo, 2021. "Self-exciting jumps in the oil market: Bayesian estimation and dynamic hedging," Energy Economics, Elsevier, vol. 99(C).
    17. Katleho Makatjane & Ntebogang Moroke, 2021. "Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index," IJFS, MDPI, vol. 9(2), pages 1-18, March.
    18. Xianling Ren & Xinping Yu, 2024. "Hedging performance analysis of energy markets: Evidence from copula quantile regression," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 432-450, March.
    19. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    21. Chang, Meng-Shiuh & Kung, Chih-Chun & Chen, Meng-Wei & Tian, Yuan, 2021. "Volatility regime, inverted asymmetry, contagion, and flights in the gold market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    22. Samet G nay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
    23. Su, Kuangxi & Yao, Yinhong & Zheng, Chengli & Xie, Wenzhao, 2023. "A novel hybrid strategy for crude oil future hedging based on the combination of three minimum-CVaR models," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 35-50.
    24. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    25. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiangyu & Tongurai, Jittima, 2021. "Cross-commodity hedging for illiquid futures: Evidence from China's base metal futures market," Global Finance Journal, Elsevier, vol. 49(C).
    2. Park, Jin Suk & Shi, Yukun, 2017. "Hedging and speculative pressures and the transition of the spot-futures relationship in energy and metal markets," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 176-191.
    3. Donald Lien & Hsiang‐Tai Lee & Her‐Jiun Sheu, 2018. "Hedging systematic risk in the commodity market with a regime‐switching multivariate rotated generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1514-1532, December.
    4. Hsiang‐Tai Lee, 2022. "A Markov regime‐switching Cholesky GARCH model for directly estimating the dynamic of optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 389-412, March.
    5. Wen-Chung Hsu & Hsiang-Tai Lee, 2018. "Cross Hedging Stock Sector Risk with Index Futures by Considering the Global Equity Systematic Risk," IJFS, MDPI, vol. 6(2), pages 1-17, April.
    6. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    7. Lee, Hsiang-Tai & Lee, Chien-Chiang, 2022. "A regime-switching real-time copula GARCH model for optimal futures hedging," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    9. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    10. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    11. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    12. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    13. Gurmeet Singh, 2017. "Estimating Optimal Hedge Ratio and Hedging Effectiveness in the NSE Index Futures," Jindal Journal of Business Research, , vol. 6(2), pages 108-131, December.
    14. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    15. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    16. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    17. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    18. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    19. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    20. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2017. "Do commodities make effective hedges for equity investors?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1274-1288.

    More about this item

    Keywords

    Energy futures; GARCH; Hedge ratio; Markov-switching.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2014:07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.