IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v26y2006i2p103-129.html
   My bibliography  Save this article

A random coefficient autoregressive Markov regime switching model for dynamic futures hedging

Author

Listed:
  • Hsiang‐Tai Lee
  • Jonathan K. Yoder
  • Ron C. Mittelhammer
  • Jill J. McCluskey

Abstract

The random coefficient autoregressive Markov regime switching model (RCARRS) for estimating optimal hedge ratios, which generalizes the random coefficient autoregressive (RCAR) and Markov regime switching (MRS) models, is introduced. RCARRS, RCAR, MRS, BEKK‐GARCH, CC‐GARCH, and OLS are compared with the use of aluminum and lead futures data. RCARRS outperforms all models out‐of‐sample for lead and is second only to BEKK‐GARCH for aluminum in terms of variancereduction point estimates. White's data‐snooping reality check null hypothesis of no superiority is rejected for BEKK‐GARCH and RCARRS for aluminum, but not for lead. © 2006 Wiley Periodicals, Inc. Jrl Fut Mark 26:103–129, 2006

Suggested Citation

  • Hsiang‐Tai Lee & Jonathan K. Yoder & Ron C. Mittelhammer & Jill J. McCluskey, 2006. "A random coefficient autoregressive Markov regime switching model for dynamic futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(2), pages 103-129, February.
  • Handle: RePEc:wly:jfutmk:v:26:y:2006:i:2:p:103-129
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    2. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    3. Aleksander Olstad & George Filis & Stavros Degiannakis, 2021. "Oil and currency volatilities: Co‐movements and hedging opportunities," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2351-2374, April.
    4. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    5. Park, Jin Suk & Shi, Yukun, 2017. "Hedging and speculative pressures and the transition of the spot-futures relationship in energy and metal markets," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 176-191.
    6. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    7. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    8. Nekhili, Ramzi & Sultan, Jahangir & Mensi, Walid, 2021. "Co-movements among precious metals and implications for portfolio management: A multivariate wavelet-based dynamic analysis," Resources Policy, Elsevier, vol. 74(C).
    9. Zhou, Jian, 2016. "Hedging performance of REIT index futures: A comparison of alternative hedge ratio estimation methods," Economic Modelling, Elsevier, vol. 52(PB), pages 690-698.
    10. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    11. Kim, Myeong Jun & Park, Sung Y., 2016. "Optimal conditional hedge ratio: A simple shrinkage estimation approach," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 139-156.
    12. Hung, Jui-Cheng & Yi-Hsien Wang, & Chang, Matthew C. & Shih, Kuang-Hsun & Hsiu-Hsueh Kao,, 2011. "Minimum variance hedging with bivariate regime-switching model for WTI crude oil," Energy, Elsevier, vol. 36(5), pages 3050-3057.
    13. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    14. Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
    15. Hsiang‐Tai Lee, 2022. "A Markov regime‐switching Cholesky GARCH model for directly estimating the dynamic of optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 389-412, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:26:y:2006:i:2:p:103-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.