IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v30y2006i9-10p1647-1669.html
   My bibliography  Save this article

A new statistic and practical guidelines for nonparametric Granger causality testing

Author

Listed:
  • Diks, Cees
  • Panchenko, Valentyn

Abstract

Upon illustrating how smoothing may cause over-rejection in nonparametric tests for Granger non-causality, we propose a new test statistic for which problems of this type can be avoided. We develop asymptotic theory for the new test statistic, and perform a simulation study to investigate the properties of the new test in comparison with its natural counterpart, the Hiemstra-Jones test. Our simulation results indicate that, if the bandwidth tends to zero at the appropriate rate as the sample size increases, the size of the new test remains close to nominal, while the power remains large. Transforming the time series to uniform marginals improves the behavior of both tests. In applications to Standard and Poor's index volumes and returns, the Hiemstra-Jones test suggests that volume Granger-causes returns. However, the evidence for this gets weaker if we carefully apply the recommendations suggested by our simulation study.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
  • Handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1647-1669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(06)00056-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Okunev, John & Wilson, Patrick & Zurbruegg, Ralf, 2002. "Relationships between Australian Real Estate and Stock Market Prices--A Case of Market Inefficiency," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(3), pages 181-192, April.
    2. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    3. Ma, Yue & Kanas, Angelos, 2000. "Testing for a nonlinear relationship among fundamentals and exchange rates in the ERM," Journal of International Money and Finance, Elsevier, vol. 19(1), pages 135-152, February.
    4. Bell, David & Kay, Jim & Malley, Jim, 1996. "A non-parametric approach to non-linear causality testing," Economics Letters, Elsevier, vol. 51(1), pages 7-18, April.
    5. Okunev, John & Wilson, Patrick & Zurbruegg, Ralf, 2000. "The Causal Relationship between Real Estate and Stock Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 21(3), pages 251-261, November.
    6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    7. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. An-Sing Chen & James Wuh Lin, 2004. "Cointegration and detectable linear and nonlinear causality: analysis using the London Metal Exchange lead contract," Applied Economics, Taylor & Francis Journals, vol. 36(11), pages 1157-1167.
    10. Ciner Cetin, 2001. "Energy Shocks and Financial Markets: Nonlinear Linkages," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(3), pages 1-11, October.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1647-1669. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.