IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v30y2006i9-10p1647-1669.html
   My bibliography  Save this article

A new statistic and practical guidelines for nonparametric Granger causality testing

Author

Listed:
  • Diks, Cees
  • Panchenko, Valentyn

Abstract

Upon illustrating how smoothing may cause over-rejection in nonparametric tests for Granger non-causality, we propose a new test statistic for which problems of this type can be avoided. We develop asymptotic theory for the new test statistic, and perform a simulation study to investigate the properties of the new test in comparison with its natural counterpart, the Hiemstra-Jones test. Our simulation results indicate that, if the bandwidth tends to zero at the appropriate rate as the sample size increases, the size of the new test remains close to nominal, while the power remains large. Transforming the time series to uniform marginals improves the behavior of both tests. In applications to Standard and Poor's index volumes and returns, the Hiemstra-Jones test suggests that volume Granger-causes returns. However, the evidence for this gets weaker if we carefully apply the recommendations suggested by our simulation study.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
  • Handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1647-1669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(06)00056-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Okunev, John & Wilson, Patrick & Zurbruegg, Ralf, 2002. "Relationships between Australian Real Estate and Stock Market Prices--A Case of Market Inefficiency," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(3), pages 181-192, April.
    2. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    3. Bell, David & Kay, Jim & Malley, Jim, 1996. "A non-parametric approach to non-linear causality testing," Economics Letters, Elsevier, vol. 51(1), pages 7-18, April.
    4. An-Sing Chen & James Wuh Lin, 2004. "Cointegration and detectable linear and nonlinear causality: analysis using the London Metal Exchange lead contract," Applied Economics, Taylor & Francis Journals, vol. 36(11), pages 1157-1167.
    5. Ciner Cetin, 2001. "Energy Shocks and Financial Markets: Nonlinear Linkages," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(3), pages 1-11, October.
    6. Ma, Yue & Kanas, Angelos, 2000. "Testing for a nonlinear relationship among fundamentals and exchange rates in the ERM," Journal of International Money and Finance, Elsevier, vol. 19(1), pages 135-152, February.
    7. Okunev, John & Wilson, Patrick & Zurbruegg, Ralf, 2000. "The Causal Relationship between Real Estate and Stock Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 21(3), pages 251-261, November.
    8. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinghua Wang & Geoffrey Ngene, 2018. "Symmetric and asymmetric nonlinear causalities between oil prices and the U.S. economic sectors," Review of Quantitative Finance and Accounting, Springer, vol. 51(1), pages 199-218, July.
    2. Nick, Sebastian, 2013. "Price Formation and Intertemporal Arbitrage within a Low-Liquidity Framework: Empirical Evidence from European Natural Gas Markets," EWI Working Papers 2013-14, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    3. Sebastian Nick, 2016. "The Informational Efficiency of European Natural Gas Hubs: Price Formation and Intertemporal Arbitrage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The nonlinear dynamic relationship of exchange rates: Parametric and nonparametric causality testing," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1641-1650, December.
    5. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    6. Charlotte Christiansen, 2007. "Volatility‐Spillover Effects in European Bond Markets," European Financial Management, European Financial Management Association, vol. 13(5), pages 923-948, November.
    7. Tiwari, Aviral Kumar & Dar, Arif Billah & Bhanja, Niyati, 2013. "Oil price and exchange rates: A wavelet based analysis for India," Economic Modelling, Elsevier, vol. 31(C), pages 414-422.
    8. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    9. Henryk Gurgul & Łukasz Lach & Roland Mestel, 2012. "The relationship between budgetary expenditure and economic growth in Poland," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 161-182, March.
    10. Vilasuso, Jon, 2001. "Causality tests and conditional heteroskedasticity: : Monte Carlo evidence," Journal of Econometrics, Elsevier, vol. 101(1), pages 25-35, March.
    11. Gurgul, Henryk & Lach, Łukasz, 2011. "Causality analysis between public expenditure and economic growth of Polish economy in last decade," MPRA Paper 52281, University Library of Munich, Germany.
    12. repec:ipg:wpaper:2013-035 is not listed on IDEAS
    13. Michalis-Panayiotis Papafilis & Maria Psillaki & Dimitris Margaritis, 2019. "The Effect of the PSI in the Relationship Between Sovereign and Bank Credit Risk: Evidence from the Euro Area," Multinational Finance Journal, Multinational Finance Journal, vol. 23(3-4), pages 211-272, September.
    14. Abimelech Paye Gbatu & Zhen Wang & Presley K. Wesseh Jr. & Isaac Yak Repha Tutdel, 2017. "Causal Effects and Dynamic Relationship between Exchange Rate Volatility and Economic Development in Liberia," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 119-131.
    15. Skalin, Joakim & Terasvirta, Timo, 1999. "Another Look at Swedish Business Cycles, 1861-1988," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 359-378, July-Aug..
    16. Ajmi, Ahdi Noomen & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sarafrazi, Soodabeh, 2014. "How strong are the causal relationships between Islamic stock markets and conventional financial systems? Evidence from linear and nonlinear tests," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 213-227.
    17. Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
    18. Fan, Qinbin & Jahan-Parvar, Mohammad R., 2012. "U.S. industry-level returns and oil prices," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 112-128.
    19. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, May.
    20. Chien-Chiang Lee & Chun-Ping Chang, 2006. "The Long-Run Relationship Between Defence Expenditures And Gdp In Taiwan," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(4), pages 361-385.
    21. Gurgul, Henryk & Lach, Łukasz, 2012. "The electricity consumption versus economic growth of the Polish economy," Energy Economics, Elsevier, vol. 34(2), pages 500-510.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1647-1669. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.