IDEAS home Printed from
   My bibliography  Save this article

New evidence on the relation between return volatility and trading volume


  • Thomas C. Chiang

    (Department of Finance, Drexel University, Philadelphia, PA, USA)

  • Zhuo Qiao

    (Faculty of Business Administration, University of Macau, Macau)

  • Wing-Keung Wong

    (Department of Economics, Hong Kong Baptist University, Hong Kong)


In the empirical literature, it has been shown that there exists both linear and non-linear bi-directional causality between trading volumes and return volatility (measured by the square of daily return). We re-examine this claim by using realized volatility as an estimator of the unobserved volatility, adopting a stationary de-trended trading volume, and applying a more recent data sample with robustness tests over time. Our linear Granger causality test shows that there is no causal linear relation running from volume to volatility, but there exists an ambiguous causality for the reverse direction. In contrast, we find strong bi-directional non-linear Granger causality between these two variables. On the basis of the non-linear forecasting modeling technique, this study provides strong evidence to support the sequential information hypothesis and demonstrates that it is useful to use lagged values of trading volume to predict return volatility. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Thomas C. Chiang & Zhuo Qiao & Wing-Keung Wong, 2010. "New evidence on the relation between return volatility and trading volume," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 502-515.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:5:p:502-515 DOI: 10.1002/for.1151

    Download full text from publisher

    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    3. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    4. An-Sing Chen & James Wuh Lin, 2004. "Cointegration and detectable linear and nonlinear causality: analysis using the London Metal Exchange lead contract," Applied Economics, Taylor & Francis Journals, vol. 36(11), pages 1157-1167.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    7. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    8. Abhay Abhyankar, 1998. "Linear and nonlinear Granger causality: Evidence from the U.K. stock index futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(5), pages 519-540, August.
    9. Jennings, Robert H & Starks, Laura T & Fellingham, John C, 1981. "An Equilibrium Model of Asset Trading with Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 36(1), pages 143-161, March.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Qiao, Zhuo & McAleer, Michael & Wong, Wing-Keung, 2009. "Linear and nonlinear causality between changes in consumption and consumer attitudes," Economics Letters, Elsevier, vol. 102(3), pages 161-164, March.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    13. Ma, Yue & Kanas, Angelos, 2000. "Testing for a nonlinear relationship among fundamentals and exchange rates in the ERM," Journal of International Money and Finance, Elsevier, vol. 19(1), pages 135-152, February.
    14. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    15. Okunev, John & Wilson, Patrick & Zurbruegg, Ralf, 2000. "The Causal Relationship between Real Estate and Stock Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 21(3), pages 251-261, November.
    16. Huh, Hyeon-seung, 2002. "GDP growth and the composite leading index: a nonlinear causality analysis for eleven countries," Economics Letters, Elsevier, vol. 77(1), pages 93-99, September.
    17. Michael Smirlock & Laura Starks, 1985. "A Further Examination Of Stock Price Changes And Transaction Volume," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 8(3), pages 217-226, September.
    18. Darrat, Ali F. & Rahman, Shafiqur & Zhong, Maosen, 2003. "Intraday trading volume and return volatility of the DJIA stocks: A note," Journal of Banking & Finance, Elsevier, vol. 27(10), pages 2035-2043, October.
    19. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    22. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    23. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    24. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    25. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    26. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 127-141, June.
    27. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    28. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    29. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. GUORUI BIAN & MICHAEL McALEER & WING-KEUNG WONG, 2013. "Robust Estimation And Forecasting Of The Capital Asset Pricing Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-18.
    2. repec:wyi:journl:002214 is not listed on IDEAS
    3. Owyong, David & Wong, Wing-Keung & Horowitz, Ira, 2015. "Cointegration and causality among the onshore and offshore markets for China's currency," Journal of Asian Economics, Elsevier, vol. 41(C), pages 20-38.
    4. repec:dau:papers:123456789/6887 is not listed on IDEAS
    5. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    6. Haiqiang Chen & Terence Tai Leung Chong & Yingni She, 2014. "A principal component approach to measuring investor sentiment in China," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 573-579, April.
    7. Souček, Michael & Todorova, Neda, 2013. "Realized volatility transmission between crude oil and equity futures markets: A multivariate HAR approach," Energy Economics, Elsevier, vol. 40(C), pages 586-597.
    8. Cathy W.S. Chen & Mike K.P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 96-124, March.
    9. Sibel ?EL?K, 2013. "New Evidence on the Relation between Trading Volume and Volatility," Business and Economic Research, Macrothink Institute, vol. 3(1), pages 176-186, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:5:p:502-515. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.