IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/79923.html
   My bibliography  Save this paper

Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn

Author

Listed:
  • Chang, C-L.
  • McAleer, M.J.
  • Wang, Y-A.

Abstract

The recent and rapidly growing interest in biofuel as a green energy source has raised concerns about its impact on the prices, returns and volatility of related agricultural commodities. Analyzing the spillover effects on agricultural commodities and biofuel helps commodity suppliers hedge their portfolios, and manage the risk and co-risk of their biofuel and agricultural commodities. There have been many papers concerned with analyzing crude oil and agricultural commodities separately. The purpose of this paper is to examine the volatility spillovers for spot and futures returns on bio-ethanol and related agricultural commodities, specifically corn and sugarcane, using the multivariate diagonal BEKK conditional volatility model. The daily data used are from 31 October 2005 to 14 January 2015. The empirical results show that in 2 of 6 cases for the spot market, there were significant negative co-volatility spillover effects, specifically corn on subsequent sugarcane co-volatility with corn, and sugarcane on subsequent corn co-volatility with sugarcane. In the other 4 cases, there are no significant co-volatility spillover effects. There are significant positive co-volatility spillover effects in all 6 cases, namely between corn and sugarcane, corn and ethanol, and sugarcane and ethanol, and vice-versa, for each of the three pairs of commodities. It is clear that the futures prices of bio-ethanol and the two agricultural commodities, corn and sugarcane, have stronger co- volatility spillovers than their spot price counterparts. These empirical results suggest that the bio-ethanol and agricultural commodities should be considered as viable futures products in financial portfolios for risk management.

Suggested Citation

  • Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2016. "Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn," Econometric Institute Research Papers EI2016-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:79923
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/79923/EI2016-15.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Guillaume Gaetan Martinet & Michael McAleer, 2018. "On the invertibility of EGARCH(p, q)," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Chang, Chia-Lin & Chen, Li-Hsueh & Hammoudeh, Shawkat & McAleer, Michael, 2012. "Asymmetric adjustments in the ethanol and grains markets," Energy Economics, Elsevier, vol. 34(6), pages 1990-2002.
    5. Zhao, Jieyuan & Goodwin, Barry K., 2011. "Volatility Spillovers in Agricultural Commodity Markets: An Application Involving Implied Volatilities from Options Markets," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103636, Agricultural and Applied Economics Association.
    6. Sergio H. Lence & Dermot J. Hayes, 2002. "U.S. Farm Policy and the Volatility of Commodity Prices and Farm Revenues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 335-351.
    7. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    8. Teresa Serra & David Zilberman & José Gil, 2011. "Price volatility in ethanol markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(2), pages 259-280, June.
    9. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    10. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    11. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    12. Chang, Chia-Lin & Huang, Biing-Wen & Chen, Meng-Gu & McAleer, Michael, 2011. "Modelling the asymmetric volatility in hog prices in Taiwan: The impact of joining the WTO," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1491-1506.
    13. Thorsten M. Egelkraut & Philip Garcia & Bruce J. Sherrick, 2007. "The Term Structure of Implied Forward Volatility: Recovery and Informational Content in the Corn Options Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(1), pages 1-11.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    16. Christian M. Hafner & Michael McAleer, 2014. "A One Line Derivation of DCC: Application of a Vector Random Coefficient Moving Average Process," Working Papers in Economics 14/19, University of Canterbury, Department of Economics and Finance.
    17. Revoredo-Giha, Cesar & Zuppiroli, Marco, 2012. "Effectiveness of hedging within the high price volatility context," Working Papers 142546, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    18. Serra, Teresa, 2012. "Biofuel-related price volatility literature: a review and new approaches," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126057, International Association of Agricultural Economists.
    19. Michael McAleer, 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometrics, MDPI, vol. 2(3), pages 1-6, September.
    20. Hafner, Christian M. & Herwartz, Helmut, 2006. "A Lagrange multiplier test for causality in variance," Economics Letters, Elsevier, vol. 93(1), pages 137-141, October.
    21. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    22. Trujillo-Barrera, Andres & Mallory, Mindy L. & Garcia, Philip, 2012. "Volatility Spillovers in U.S. Crude Oil, Ethanol, and Corn Futures Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-16, August.
    23. Sergio H. Lence & Dermot J. Hayes, 2002. "U.S. Farm Policy and the Volatility of Commodity Prices and Farm Revenues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 335-351.
    24. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    27. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    28. Zhang, Dengjun & Asche, Frank & Oglend, Atle, 2014. "Ethanol and trade: An analysis of price transmission in the US market," Energy Economics, Elsevier, vol. 42(C), pages 1-8.
    29. Teresa Serra & José M. Gil, 2013. "Price volatility in food markets: can stock building mitigate price fluctuations?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(3), pages 507-528, July.
    30. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    32. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    33. Zibin Zhang & Luanne Lohr & Cesar Escalante & Michael Wetzstein, 2009. "Ethanol, Corn, and Soybean Price Relations in a Volatile Vehicle-Fuels Market," Energies, MDPI, vol. 2(2), pages 1-20, June.
    34. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    35. Sendhil, R. & Kar, Amit & Mathur, V.C. & Jha, Girish K., 2013. "Price Discovery, Transmission and Volatility: Evidence from Agricultural Commodity Futures," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(1), June.
    36. Hyun J. Jin & Darren L. Frechette, 2004. "Fractional Integration in Agricultural Futures Price Volatilities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 432-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    2. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    3. Fengming Qin & Junru Zhang & Zhaoyong Zhang, 2018. "RMB Exchange Rates and Volatility Spillover across Financial Markets in China and Japan," Risks, MDPI, vol. 6(4), pages 1-26, October.
    4. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    5. Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Econometric Institute Research Papers TI 2018-052/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    7. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    8. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    9. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Risk Spillovers in Returns for Chinese and International Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-031/III, Tinbergen Institute.
    10. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    11. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    12. Tan Ngoc Vu & Duc Hong Vo & Chi Minh Ho & Loan Thi-Hong Van, 2019. "Modeling the Impact of Agricultural Shocks on Oil Price in the US: A New Approach," JRFM, MDPI, vol. 12(3), pages 1-27, September.
    13. Chang, C-L. & Hsu, S.-H. & McAleer, M.J., 2018. "An Event Study of Chinese Tourists to Taiwan," Econometric Institute Research Papers 2018-003/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    2. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    3. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    4. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    5. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    6. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    7. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    8. Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Energy Policy, Elsevier, vol. 69(C), pages 227-247.
    9. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    10. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    11. Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    13. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    14. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    15. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    16. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    17. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    18. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    19. Huang, Biing-Wen & Chen, Meng-Gu & Chang, Chia-Lin & McAleer, Michael, 2009. "Modelling risk in agricultural finance: Application to the poultry industry in Taiwan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1472-1487.
    20. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.

    More about this item

    Keywords

    Biofuel; spot prices; futures prices; returns; volatility; risk; co-risk; bio-ethanol; corn; sugarcane; diagonal BEKK model; co-volatility spillover effects; hedging; risk management;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:79923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.