IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Currency Hedging Strategies Using Dynamic Multivariate GARCH

This paper examines the effect on the effectiveness of using futures contracts as hedging instruments of: 1) the model of volatility used to estimate conditional variances and covariances, 2) the analyzed currency, and 3) the maturity of the futures contract being used. For this purpose, daily data of futures and spot exchange rates of three currencies, Euro, British pound and Japanese yen, against the American dollar are used to analyze hedge ratios and hedging effectiveness resulting from using two different maturity currency contracts, near-month and next-to-near-month contract. We estimate four multivariate volatility models (CCC, VARMA-AGARCH, DCC and BEKK) and calculate optimal portfolio weights and optimal hedge ratios to identify appropriate currency hedging strategies. Hedging effectiveness index suggests that the best results in terms of reducing the variance of the portfolio are for the USD/GBP exchange rate. The results show that futures hedging strategies are slightly more effective when the near-month future contract is used for the USD/GBP and USD/JPY currencies. Moreover, CCC and AGARCH models provide similar hedging effectiveness although some differences appear when the DCC and BEKK models are used.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://eprints.ucm.es/13815/1/1133.pdf
File Function: October 2011
Download Restriction: no

Paper provided by Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico in its series Documentos de Trabajo del ICAE with number 2011-33.

as
in new window

Length: 36 pages
Date of creation: 2011
Date of revision:
Handle: RePEc:ucm:doicae:1133
Note: The authors are most grateful for the helpful comments and suggestions of participants at the International Conference on Risk Modelling and Management, Madrid, Spain, June 2011, especially to M. McAleer and T. Pérez Amaral. The second author acknowledges the financial support of the Ministerio de Ciencia y Tecnología and Comunidad de Madrid, Spain.
Contact details of provider: Phone: +34 913942604
Fax: 913942531
Web page: https://www.ucm.es/icae
Email:


More information through EDIRC

Order Information: Postal: Facultad de Ciencias Económicas y Empresariales. Pabellón prefabricado, 1ª Planta, ala norte. Campus de Somosaguas, 28223 - POZUELO DE ALARCÓN (MADRID)
Web: https://www.ucm.es/fundamentos-analisis-economico2/documentos-de-trabajo-del-icae Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michael McAleer & Juan-Ángel Jiménez-Martín & Teodosio Pérez-Amaral, 2011. "International Evidence on GFC-robust Forecasts for Risk Management under the Basel Accord," KIER Working Papers 757, Kyoto University, Institute of Economic Research.
  2. Atreya Chakraborty & John Barkoulas, 1999. "Dynamic futures hedging in currency markets," The European Journal of Finance, Taylor & Francis Journals, vol. 5(4), pages 299-314.
  3. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Chatayan Wiphatthanananthakul & Michael McAleer, 2009. "A Simple Expected Volatility (SEV) Index: Application to SET50 Index Options," CIRJE F-Series CIRJE-F-672, CIRJE, Faculty of Economics, University of Tokyo.
  5. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  6. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 535-551, December.
  7. Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
  8. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  9. Yuan-Hung Hsu Ku & Ho-Chyuan Chen & Kuang-Hua Chen, 2007. "On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 503-509.
  10. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
  11. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  12. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
  13. Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2010. "Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH," CIRJE F-Series CIRJE-F-704, CIRJE, Faculty of Economics, University of Tokyo.
  14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  16. Massimiliano Caporin & Michael McAleer, 2010. "The Ten Commandments For Managing Investments," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 196-200, 02.
  17. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  18. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
  19. Donald Lien & Y. K. Tse & Albert Tsui, 2002. "Evaluating the hedging performance of the constant-correlation GARCH model," Applied Financial Economics, Taylor & Francis Journals, vol. 12(11), pages 791-798.
  20. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters, in: Regional Climate Change and Variability, chapter 1 Edward Elgar Publishing.
  21. Chan Wing Hong, 2008. "Dynamic Hedging with Foreign Currency Futures in the Presence of Jumps," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-25, May.
  22. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," Working Papers in Economics 10/58, University of Canterbury, Department of Economics and Finance.
  23. Byström, Hans, 2001. "Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory," Working Papers 2001:18, Lund University, Department of Economics.
  24. Shawkat Hammoudeh & Yuan Yuan & Michael McAleer & Mark A. Thompson, 2009. "Precious Metals-Exchange Rate Volatility Transmissions and Hedging Strategies," CARF F-Series CARF-F-187, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  25. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
  26. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  27. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-70, March.
  28. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  30. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
  31. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
  32. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
  33. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-24, April-Jun.
  34. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  35. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  36. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
  37. Ronald D. Ripple & Imad A. Moosa, 2007. "Hedging effectiveness and futures contract maturity: the case of NYMEX crude oil futures," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 683-689.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1133. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Águeda González Abad)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.