IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/10-63.html
   My bibliography  Save this paper

GFC-Robust Risk Management Strategies under the Basel Accord

Author

Listed:

Abstract

A risk management strategy is proposed as being robust to the Global Financial Crisis (GFC) by selecting a Value-at-Risk (VaR) forecast that combines the forecasts of different VaR models. The robust forecast is based on the median of the point VaR forecasts of a set of conditional volatility models. This risk management strategy is GFC-robust in the sense that maintaining the same risk management strategies before, during and after a financial crisis would lead to comparatively low daily capital charges and violation penalties. The new method is illustrated by using the S&P500 index before, during and after the 2008-09 global financial crisis. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria. The median VaR risk management strategy is GFC-robust as it provides stable results across different periods relative to other VaR forecasting models. The new strategy based on combined forecasts of single models is straightforward to incorporate into existing computer software packages that are used by banks and other financial institutions.

Suggested Citation

  • Michael McAleer & Juan-Ángel Jiménez-Martín & Teodosio Pérez-Amaral, 2010. "GFC-Robust Risk Management Strategies under the Basel Accord," Working Papers in Economics 10/63, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:10/63
    as

    Download full text from publisher

    File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1063.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hideyuki Mizobuchi & Shigehiro Serizawa, 2006. "Maximal Domain for Strategy-proof Rules in Allotment Economies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, pages 195-210.
    2. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, pages 259-284.
    3. Fumio Ohtake & Jun Tomioka, 2004. "Who Supports Redistribution?," The Japanese Economic Review, Japanese Economic Association, pages 333-354.
    4. Alfonso Novales, 2000. "The role of simulation methods in Macroeconomics," Spanish Economic Review, Springer;Spanish Economic Association, vol. 2(3), pages 155-181.
    5. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, pages 77-102.
    6. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    7. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    8. Michael McAleer & Juan-Angel Jimenez-Martin & Teodosio Pérez-Amaral, 0000. "Has the Basel II Accord Encouraged Risk Management during the 2008-09 Financial Crisis?," Tinbergen Institute Discussion Papers 09-039/4, Tinbergen Institute.
    9. Massimiliano Caporin & Michael McAleer, 2010. "The Ten Commandments For Managing Investments," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 196-200, February.
    10. R. Caballero & E. Cerda & M. Muñoz & L. Rey, 2002. "Analysis and comparisons of some solution concepts for stochastic programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, pages 101-123.
    11. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value-At-Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    12. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    13. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    14. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    16. Juan-Angel Jimenez-Martin & Michael McAleer & Teodosio Pérez-Amaral, 2009. "The Ten Commandments for Managing Value-at-Risk Under the Basel II Accord," Documentos de Trabajo del ICAE 2009-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    17. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, pages 97-111.
    18. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, pages 77-102.
    19. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, pages 83-106.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    22. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Model confidence sets for forecasting models," FRB Atlanta Working Paper 2005-07, Federal Reserve Bank of Atlanta.
    23. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
    24. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    25. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    26. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
    27. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, pages 307-327.
    28. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    29. Juan-Ángel Jiménez-Martín & Michael McAleer & Teodosio Pérez-Amaral, 2009. "The Ten Commandments For Managing Value At Risk Under The Basel Ii Accord," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 850-855, December.
    30. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    31. Claudio Borio, 2008. "The financial turmoil of 2007-?: a preliminary assessment and some policy considerations," BIS Working Papers 251, Bank for International Settlements.
    32. Jeremy Berkowitz & James M. O'Brien, 2001. "How accurate are Value-at-Risk models at commercial banks?," Finance and Economics Discussion Series 2001-31, Board of Governors of the Federal Reserve System (U.S.).
    33. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    34. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, pages 109-117.
    35. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    36. Michael Mcaleer & Bernardo da Veiga, 2008. "Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 1-19.
    37. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Value-at-Risk (VaR); daily capital charges; robust forecasts; violation penalties; optimizing strategy; aggressive risk management strategy; conservative risk management strategy; Basel II Accord; global financial crisis;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:10/63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee). General contact details of provider: http://edirc.repec.org/data/decannz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.