IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/10-58.html
   My bibliography  Save this paper

Model Selection and Testing of Conditional and Stochastic Volatility Models

Author

Listed:

Abstract

This paper focuses on the selection and comparison of alternative non-nested volatility models. We review the traditional in-sample methods commonly applied in the volatility framework, namely diagnostic checking procedures, information criteria, and conditions for the existence of moments and asymptotic theory, as well as the out-of-sample model selection approaches, such as mean squared error and Model Confidence Set approaches. The paper develops some innovative loss functions which are based on Value-at-Risk forecasts. Finally, we present an empirical application based on simple univariate volatility models, namely GARCH, GJR, EGARCH, and Stochastic Volatility that are widely used to capture asymmetry and leverage.

Suggested Citation

  • Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," Working Papers in Economics 10/58, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:10/58
    as

    Download full text from publisher

    File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1058.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    2. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    3. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
    4. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters,in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46 National Bureau of Economic Research, Inc.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    6. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
    7. Jung-Hee Lee & B. Wade Brorsen, 1997. "A non-nested test of GARCH vs. EGARCH models," Applied Economics Letters, Taylor & Francis Journals, vol. 4(12), pages 765-768.
    8. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    11. Masahito Kobayashi & Xiuhong Shi, 2005. "Testing for EGARCH Against Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 135-150, January.
    12. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    14. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    15. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    16. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    17. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    18. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    19. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
    20. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    21. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
    22. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    23. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    24. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    25. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    26. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    27. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    28. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    29. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    30. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael McAleer & Kim Radalj, 2013. "Herding, Information Cascades and Volatility Spillovers in Futures Markets," Journal of Reviews on Global Economics, Lifescience Global, vol. 2, pages 307-329.
    2. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 97-111.
    3. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Amaral, Teodosio Perez, 2013. "The rise and fall of S&P500 variance futures," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 151-167.
    4. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
    5. Chia-Lin Chang & Juan-Ángel Jiménez-Martín & Esfandiar Maasoumi & Michael McAleer & Teodosio Pérez-Amaral, 2015. "A Stochastic Dominance Approach to the Basel III Dilemma: Expected Shortfall or VaR?," Tinbergen Institute Discussion Papers 15-056/III, Tinbergen Institute.
    6. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
    7. Chia-lin Chang & Juan-Ángel Jiménez-Martín & Michael McAleer & Teodosio Pérez-Amaral, 2011. "Risk management of risk under the Basel Accord: forecasting value-at-risk of VIX futures," Managerial Finance, Emerald Group Publishing, vol. 37(11), pages 1088-1106, September.
    8. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    9. Michael McAleer & Juan‐Ángel Jiménez‐Martín & Teodosio Pérez‐Amaral, 2013. "International Evidence on GFC‐Robust Forecasts for Risk Management under the Basel Accord," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 267-288, April.
    10. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    11. Chang, Chia-Lin & Jiménez-Martín, Juan-Ángel & Maasoumi, Esfandiar & Pérez-Amaral, Teodosio, 2015. "A stochastic dominance approach to financial risk management strategies," Journal of Econometrics, Elsevier, vol. 187(2), pages 472-485.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Stavros Stavroyiannis, 2017. "A note on the Nelson Cao inequality constraints in the GJR-GARCH model: Is there a leverage effect?," Papers 1705.00535, arXiv.org.
    14. Helmut Lütkepohl & Thore Schlaak, 2017. "Choosing between Different Time-Varying Volatility Models for Structural Vector Autoregressive Analysis," Discussion Papers of DIW Berlin 1672, DIW Berlin, German Institute for Economic Research.
    15. Chang, C-L. & Jiménez-Martín, J.A. & Maasoumi, E. & McAleer, M.J., 2015. "Choosing Expected Shortfall over VaR in Basel III Using Stochastic Dominance," Econometric Institute Research Papers EI2015-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Ahmed, Shamim & Valente, Giorgio, 2015. "Understanding the price of volatility risk in carry trades," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 118-129.

    More about this item

    Keywords

    Volatility model selection; volatility model comparison; non-nested models; model confidence set; Value-at-Risk forecasts; asymmetry; leverage;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:10/58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee). General contact details of provider: http://edirc.repec.org/data/decannz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.