IDEAS home Printed from https://ideas.repec.org/p/fth/cemfdt/9519.html
   My bibliography  Save this paper

Analytic Derivatives and the Computation of Garch Estimates

Author

Listed:
  • Fiorentini,G.
  • Calzolari,G.
  • Panattoni,L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fiorentini,G. & Calzolari,G. & Panattoni,L., 1995. "Analytic Derivatives and the Computation of Garch Estimates," Papers 9519, Centro de Estudios Monetarios Y Financieros-.
  • Handle: RePEc:fth:cemfdt:9519
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    2. Bianchi, Carlo & Calzolari, Giorgio & Sterbenz, Frederic P., 1991. "Simulation of interest rate options using ARCH," MPRA Paper 24844, University Library of Munich, Germany.
    3. Calzolari, Giorgio & Fiorentini, Gabriele, 1993. "Alternative covariance estimators of the standard Tobit model," Economics Letters, Elsevier, vol. 42(1), pages 5-13.
    4. McCurdy, Thomas H & Morgan, Ieuan G, 1988. "Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of Heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(3), pages 187-202, July-Sept.
    5. Belsley, David A., 1980. "On the efficient computation of the nonlinear full-information maximum-likelihood estimator," Journal of Econometrics, Elsevier, vol. 14(2), pages 203-225, October.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    8. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    9. Chesher, Andrew, 1989. "Hajek Inequalities, Measures of Leverage and the Size of Heteroskedasticity Robust Wald Tests," Econometrica, Econometric Society, vol. 57(4), pages 971-977, July.
    10. Calzolari, Giorgio & Panattoni, Lorenzo & Weihs, Claus, 1987. "Computational efficiency of FIML estimation," Journal of Econometrics, Elsevier, vol. 36(3), pages 299-310, November.
    11. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    12. Calzolari, Giorgio & Panattoni, Lorenzo, 1988. "Alternative Estimators of FIML Covariance Matrix: A Monte Carlo Stud y," Econometrica, Econometric Society, vol. 56(3), pages 701-714, May.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calzolari, Giorgio & Fiorentini, Gabriele & Panattoni, Lorenzo, 1993. "Alternative estimators of the covariance matrix in GARCH models," MPRA Paper 24433, University Library of Munich, Germany.
    2. Calzolari, Giorgio, 1992. "Stima delle equazioni simultanee non-lineari: una rassegna [Estimation of nonlinear simultaneous equations: a survey]," MPRA Paper 24123, University Library of Munich, Germany, revised 1992.
    3. Calzolari, Giorgio & Panattoni, Lorenzo, 1987. "Finite sample performance of the robust Wald test in simultaneous equation systems," MPRA Paper 22557, University Library of Munich, Germany.
    4. Calzolari, Giorgio & Fiorentini, Gabriele, 1994. "Conditional heteroskedasticity in nonlinear simultaneous equations," MPRA Paper 24428, University Library of Munich, Germany.
    5. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    6. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    7. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    8. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    9. Daniel Ventosa, "undated". "A proposal for a new specification for a conditionally heteroskedastic variance model: the Quadratic Moving-Average Conditional Heteroskedasticity and an application to the D. Mark-U.S. dollar Exchang," UFAE and IAE Working Papers 513.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    10. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    11. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    12. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    13. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    14. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    15. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    16. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    17. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 16(1), pages 129-154.
    18. N. Antonakakis & J. Darby, 2013. "Forecasting volatility in developing countries' nominal exchange returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
    19. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    20. Elder, John, 2001. "Can the Volatility of the Federal Funds Rate Explain the Time-Varying Risk Premium in Treasury Bill Returns?," Journal of Macroeconomics, Elsevier, vol. 23(1), pages 73-97, January.

    More about this item

    Keywords

    MODELS; TIME SERIES;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:cemfdt:9519. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cemfies.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/cemfies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.