IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/19-01.html
   My bibliography  Save this paper

New testing approaches for mean-variance predictability

Author

Listed:
  • Gabriele Fiorentini

    () (Università di Firenze, Italy; Rimini Centre for Economic Analysis)

  • Enrique Sentana

    () (CEMFI, Spain)

Abstract

We propose tests for smooth but persistent serial correlation in risk premia and volatilities that exploit the non-normality of financial returns. Our parametric tests are robust to distributional misspecification, while our semiparametric tests are as powerful as if we knew the true return distribution. Local power analyses confirm their gains over existing methods, while Monte Carlo exercises assess their finite sample reliability. We apply our tests to quarterly returns on the five Fama-French factors for international stocks, whose distributions are mostly symmetric and fat-tailed. Our results highlight noticeable differences across regions and factors and confirm the fragility of Gaussian tests.

Suggested Citation

  • Gabriele Fiorentini & Enrique Sentana, 2019. "New testing approaches for mean-variance predictability," Working Paper series 19-01, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:19-01
    as

    Download full text from publisher

    File URL: http://rcea.org/RePEc/pdf/wp19-01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    2. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    3. Fiorentini, Gabriele & Sentana, Enrique, 1998. "Conditional Means of Time Series Processes and Time Series Processes for Conditional Means," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1101-1118, November.
    4. Hodgson, Douglas J & Vorkink, Keith P, 2003. "Efficient Estimation of Conditional Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 269-283, April.
    5. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    6. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    7. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    8. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    9. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    10. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    11. Gabriele Fiorentini & Enrique Sentana, 2018. "Consistent non-Gaussian pseudo maximum likelihood estimators," Working Paper series 18-06, Rimini Centre for Economic Analysis.
    12. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    13. Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013. "A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators," Econometric Theory, Cambridge University Press, vol. 29(03), pages 567-589, June.
    14. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    15. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    16. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    17. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    18. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, vol. 23(02), pages 251-280, April.
    19. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    20. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    21. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    22. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    23. Cochrane, John H., 1991. "Volatility tests and efficient markets : A review essay," Journal of Monetary Economics, Elsevier, vol. 27(3), pages 463-485, June.
    24. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    25. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
    26. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    27. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    28. Matthew Spiegel, 2008. "Forecasting the Equity Premium: Where We Stand Today," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1453-1454, July.
    29. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    30. Davidson, Russel & MacKinnon, James G., 1983. "Small sample properties of alternative forms of the Lagrange Multiplier test," Economics Letters, Elsevier, vol. 12(3-4), pages 269-275.
    31. Lorenzo Camponovo & Olivier Scaillet & Fabio Trojani, 2016. "Predictability Hidden by Anomalous Observations," Papers 1612.05072, arXiv.org.
    32. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    33. Fama, Eugene F. & French, Kenneth R., 2012. "Size, value, and momentum in international stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 457-472.
    34. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    35. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    36. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    37. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    38. Gabriele Fiorentini & Enrique Sentana, 2007. "On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models," Working Paper series 38_07, Rimini Centre for Economic Analysis.
    39. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    financial forecasting; moment tests; misspecification; robustness; volatility;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:19-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.