IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Testing Distributional Assumptions: A GMM Approach

  • Bontemps, Christian
  • Meddahi, Nour

In this paper, we consider testing marginal distributional assumptions. Special cases that we consider are the Pearson's family like the Gaussian, Student, Gamma, Beta and uniform distributions. The test statistics we consider are based on the first moment conditions derived by Hansen and Scheinkman (1995) when one considers a continuous time model. These moment conditions are valid even if the observations are not a sample of a continuous time model. We treat in detail the parameter uncertainty problem when the considered process is not observed but depends on estimators of unknown parameters. We also consider the time series case and adopt a HAC approach for this purpose. This is a generalization of Bontemps and Meddahi (2002) who considered this approach for the Normal case

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Full text
Download Restriction: no

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 486.

in new window

Date of creation: Oct 2007
Date of revision:
Publication status: Published in Journal of Applied Econometrics, vol.�27, n°6, septembre 2012, p.�978-1012.
Handle: RePEc:ide:wpaper:5705
Contact details of provider: Postal: Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE
Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jean-Marie Dufour & Abdeljelil Farhat & Lucien Gardiol & Lynda Khalaf, 1998. "Simulation-based finite sample normality tests in linear regressions," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C154-C173.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:5705. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.