IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A diagnostic m-test for distributional specification of parametric conditional heteroscedasticity models for financial data

  • Lejeune, Bernard
Registered author(s):

    This paper proposes a convenient and generally applicable diagnostic m-test for checking the distributional specification of parametric conditional heteroscedasticity models for financial data such as the customary Student t GARCH model. The proposed test is based on the moments of the probability integral transform of the innovations of the assumed model. Monte-Carlo evidence indicates that our test performs well both in terms of size and power. An empirical example illustrates the practical usefulness of the test and some of its possible extensions are outlined.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Empirical Finance.

    Volume (Year): 16 (2009)
    Issue (Month): 3 (June)
    Pages: 507-523

    in new window

    Handle: RePEc:eee:empfin:v:16:y:2009:i:3:p:507-523
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    2. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    4. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477451, October.
    5. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
    6. White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805, October.
    7. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    8. Jeffrey M. Wooldridge, 1987. "Specification Testing and Quasi-Maximum Likelihood Estimation," Working papers 479, Massachusetts Institute of Technology (MIT), Department of Economics.
    9. Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
    10. Jenny N. Lye, 1998. "Parametric Distributional Flexibility and Conditional Variance Models with an Application to Hourly Exchange Rates," IMF Working Papers 98/29, International Monetary Fund.
    11. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
    12. Yoon-Jae Whang & Donald W.K. Andrews, 1991. "Tests of Specification for Parametric and Semiparametric Models," Cowles Foundation Discussion Papers 968, Cowles Foundation for Research in Economics, Yale University.
    13. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    14. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-70, September.
    15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    16. Andrews, Donald W K, 1988. "Chi-Square Diagnostic Tests for Econometric Models: Theory," Econometrica, Econometric Society, vol. 56(6), pages 1419-53, November.
    17. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    18. Andrews, Donald W. K., 1988. "Chi-square diagnostic tests for econometric models : Introduction and applications," Journal of Econometrics, Elsevier, vol. 37(1), pages 135-156, January.
    19. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    20. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    21. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    22. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:16:y:2009:i:3:p:507-523. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.