IDEAS home Printed from
   My bibliography  Save this paper

M Tests with a New Normalization Matrix


  • Zhongjun Qu

    () (Department of Economics, Boston University)

  • Yi-Ting Chen

    () (Institute of Economics, Academia Sinica)


This paper proposes a new family of M tests, building on the work of Kuan and Lee (2006) and Kiefer, Vogelsang and Bunzel (2000). The new test replaces the asymptotic covariance matrix in the conventional M test with an alternative normalization matrix, constructed using moment functions estimated from (K + 1) recursive subsamples. It is simple to implement, automatically accounts for the e¤ect of parameter estimation uncertainty, and allows for condi- tional heteroskedasticity and serial correlation of general forms. It converges to the central F distribution under the fixed-K asymptotics, and to the Chi-square distribution if K is allowed to approach in?nity. We illustrate its applicability using three simulation examples. They are: (1) specification testing for conditional heteroskedastic models, (2) nonnested testing with serially correlated errors, and (3) testing for serial correlation with unknown heteroskedasticity. The test exhibits good size properties and its power can be substantially higher than the test of Kuan and Lee (2006). Overall, the results suggest that, by integrating "self-normalization" and "fixed-bandwidth asymptotics" into the M-testing framework, we obtain an analytically simple yet widely applicable approach to misspeci?cation testing.

Suggested Citation

  • Zhongjun Qu & Yi-Ting Chen, 2010. "M Tests with a New Normalization Matrix," Boston University - Department of Economics - Working Papers Series WP2010-050, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2010-050

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
    4. Bernanke, Ben & Bohn, Henning & Reiss, Peter C., 1988. "Alternative non-nested specification tests of time-series investment models," Journal of Econometrics, Elsevier, vol. 37(3), pages 293-326, March.
    5. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    6. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Asymptotics For Garch Squared Residual Correlations," Econometric Theory, Cambridge University Press, vol. 19(04), pages 515-540, August.
    7. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    8. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    11. Xiaofeng Shao, 2010. "A self-normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366.
    12. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767, March.
    13. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    14. Bunzel H. & Kiefer N. M. & Vogelsang T. J., 2001. "Simple Robust Testing of Hypotheses in Nonlinear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1088-1096, September.
    15. Durbin, J, 1970. "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables," Econometrica, Econometric Society, vol. 38(3), pages 410-421, May.
    16. Choi, Hwan-Sik & Kiefer, Nicholas M., 2008. "Robust Nonnested Testing and the Demand for Money," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 9-17, January.
    17. Pagan, Adrian & Vella, Frank, 1989. "Diagnostic Tests for Models Based on Individual Data: A Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 29-59, Supplemen.
    18. Heung Wong & Shiqing Ling, 2005. "Mixed Portmanteau Tests for Time-Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 569-579, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2010-050. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Program Coordinator). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.