IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1694.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Principal Components and Long Run Implications of Multivariate Diffusions

Author

Listed:

Abstract

We investigate a method for extracting nonlinear principal components. These principal components maximize variation subject to smoothness and orthogonality constraints; but we allow for a general class of constraints and multivariate densities, including densities without compact support and even densities with algebraic tails. We provide primitive sufficient conditions for the existence of these principal components. We characterize the limiting behavior of the associated eigenvalues, the objects used to quantify the incremental importance of the principal components. By exploiting the theory of continuous-time, reversible Markov processes, we give a different interpretation of the principal components and the smoothness constraints. When the diffusion matrix is used to enforce smoothness, the principal components maximize long-run variation relative to the overall variation subject to orthogonality constraints. Moreover, the principal components behave as scalar autoregressions with heteroskedastic innovations; this supports semiparametric identification of a multivariate reversible diffusion process and tests of the overidentifying restrictions implied by such a process from low frequency data. We also explore implications for stationary, possibly non-reversible diffusion processes.

Suggested Citation

  • Xiaohong Chen & Lars Peter Hansen & Jose Scheinkman, 2009. "Principal Components and Long Run Implications of Multivariate Diffusions," Cowles Foundation Discussion Papers 1694, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1694
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d16/d1694.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darolles, Serge & Florens, Jean-Pierre & Gourieroux, Christian, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Journal of Econometrics, Elsevier, vol. 119(2), pages 323-353, April.
    2. Hansen, Lars Peter & Alexandre Scheinkman, Jose & Touzi, Nizar, 1998. "Spectral methods for identifying scalar diffusions," Journal of Econometrics, Elsevier, vol. 86(1), pages 1-32, June.
    3. Serge Darolles & Jean-Pierre Florens & Christian Gourieroux, 2004. "Kernel-based nonlinear canonical analysis and time reversibility," Post-Print halshs-00678062, HAL.
    4. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Gobet, Emmanuel & Hoffmann, Marc & Reiß, Markus, 2002. "Nonparametric estimation of scalar diffusions based on low frequency data is ill-posed," SFB 373 Discussion Papers 2002,57, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    7. Florens, Jean-Pierre & Renault, Eric & Touzi, Nizar, 1998. "Testing For Embeddability By Stationary Reversible Continuous-Time Markov Processes," Econometric Theory, Cambridge University Press, vol. 14(6), pages 744-769, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    2. Escanciano, Juan Carlos & Hoderlein, Stefan & Lewbel, Arthur & Linton, Oliver & Srisuma, Sorawoot, 2021. "Nonparametric Euler Equation Identification And Estimation," Econometric Theory, Cambridge University Press, vol. 37(5), pages 851-891, October.
    3. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    4. Kristensen, Dennis, 2011. "Semi-nonparametric estimation and misspecification testing of diffusion models," Journal of Econometrics, Elsevier, vol. 164(2), pages 382-403, October.
    5. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    6. Chorowski, Jakub & Trabs, Mathias, 2016. "Spectral estimation for diffusions with random sampling times," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 2976-3008.
    7. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    8. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    9. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
    10. Strauch, Claudia, 2015. "Sharp adaptive drift estimation for ergodic diffusions: The multivariate case," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2562-2602.
    11. Gorodnichenko, Yuriy & Ng, Serena, 2017. "Level and volatility factors in macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 91(C), pages 52-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Lars Peter Hansen & Jos´e A. Scheinkman, 2005. "Principal Components and the Long Run," Levine's Bibliography 122247000000000997, UCLA Department of Economics.
    2. Christian Gouriéroux & Eric Renault & Pascale Valery, 2007. "Diffusion Processes with Polynomial Eigenfunctions," Annals of Economics and Statistics, GENES, issue 85, pages 115-130.
    3. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    4. Christian Gourieroux & Hung T. Nguyen & Songsak Sriboonchitta, 2017. "Nonparametric estimation of a scalar diffusion model from discrete time data: a survey," Annals of Operations Research, Springer, vol. 256(2), pages 203-219, September.
    5. repec:adr:anecst:y:2007:i:85:p:05 is not listed on IDEAS
    6. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    7. Escanciano, Juan Carlos & Hoderlein, Stefan & Lewbel, Arthur & Linton, Oliver & Srisuma, Sorawoot, 2021. "Nonparametric Euler Equation Identification And Estimation," Econometric Theory, Cambridge University Press, vol. 37(5), pages 851-891, October.
    8. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    9. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    10. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    11. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    12. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Inference for Integrated Volatility," Departmental Working Papers 200616, Rutgers University, Department of Economics.
    13. Dimitris Politis & Dimitrios Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Papers 0005, University of Peloponnese, Department of Economics.
    14. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
    15. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    16. Shibin Zhang, 2023. "A copula spectral test for pairwise time reversibility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 705-729, October.
    17. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    18. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    19. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    20. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Correcting the Errors: A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," CIRANO Working Papers 2002s-91, CIRANO.
    21. Zacharias Psaradakis, 2008. "Assessing Time‐Reversibility Under Minimal Assumptions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 881-905, September.

    More about this item

    Keywords

    Nonlinear principal components; Discrete spectrum; Eigenvalue decay rates; Multivariate diffusion; Quadratic form; Conditional expectations operator;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.