IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23672.html
   My bibliography  Save this paper

Level and Volatility Factors in Macroeconomic Data

Author

Listed:
  • Yuriy Gorodnichenko
  • Serena Ng

Abstract

The conventional wisdom in macroeconomic modeling is to attribute business cycle fluctuations to innovations in the level of the fundamentals. Though volatility shocks could be important too, their propagating mechanism is still not well understood partly because modeling the latent volatilities can be quite demanding. This paper suggests a simply methodology that can separate the level factors from the volatility factors and assess their relative importance without directly estimating the volatility processes. This is made possible by exploiting features in the second order approximation of equilibrium models and information in a large panel of data. Our largest volatility factor V 1 is strongly counter-cyclical, persistent, and loads heavily on housing sector variables. When augmented to a VAR in housing starts, industrial production, the fed-funds rate, and inflation, the innovations to V 1 can account for a non-negligible share of the variations at horizons of four to five years. However, V 1 is only weakly correlated with the volatility of our real activity factor and does not displace various measures of uncertainty. This suggests that there are second-moment shocks and non-linearities with cyclical implications beyond the ones we studied. More theorizing is needed to understand the interaction between the level and second-moment dynamics.

Suggested Citation

  • Yuriy Gorodnichenko & Serena Ng, 2017. "Level and Volatility Factors in Macroeconomic Data," NBER Working Papers 23672, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23672
    Note: EFG ME TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23672.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    2. King, Robert G & Watson, Mark W, 1998. "The Solution of Singular Linear Difference Systems under Rational Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1015-1026, November.
    3. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    4. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    7. Fernández-Villaverde, Jesús & Rubio-Ramírez, Juan Francisco, 2010. "Macroeconomics and Volatility: Data, Models, and Estimation," CEPR Discussion Papers 8169, C.E.P.R. Discussion Papers.
    8. Clark, Todd E. & Carriero, Andrea & Massimiliano, Marcellino, 2016. "Measuring Uncertainty and Its Impact on the Economy," Working Paper 1622, Federal Reserve Bank of Cleveland, revised 09 May 2017.
    9. Benigno, Gianluca & Benigno, Pierpaolo & Nisticò, Salvatore, 2013. "Second-order approximation of dynamic models with time-varying risk," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1231-1247.
    10. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    11. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    12. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    13. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    14. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    15. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Keith Kuester & Juan Rubio-Ramírez, 2015. "Fiscal Volatility Shocks and Economic Activity," American Economic Review, American Economic Association, vol. 105(11), pages 3352-3384, November.
    16. Xiaohong Chen & Lars Peter Hansen & Jose Scheinkman, 2009. "Principal Components and Long Run Implications of Multivariate Diffusions," Cowles Foundation Discussion Papers 1694, Cowles Foundation for Research in Economics, Yale University.
    17. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    18. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 131(4), pages 1593-1636.
    19. Sims, Christopher A. & Zha, Tao, 2006. "Does Monetary Policy Generate Recessions?," Macroeconomic Dynamics, Cambridge University Press, vol. 10(02), pages 231-272, April.
    20. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    21. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    23. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    24. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    25. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    26. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    27. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    28. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    29. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    30. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    31. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    32. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesa-Bianchi, Ambrogio & Pesaran, M Hashem & Rebucci, Alessandro, 2018. "Uncertainty and Economic Activity: A Multi-Country Perspective," CEPR Discussion Papers 12713, C.E.P.R. Discussion Papers.
    2. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.

    More about this item

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23672. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.