IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/2963.html
   My bibliography  Save this paper

Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function

Author

Listed:
  • Schmitt-Grohé, Stephanie
  • Uribe, Martín

Abstract

Since the seminal papers of Kydland and Prescott (1982) and King, Plosser and Rebelo (1988), it has become commonplace in macroeconomics to approximate the solution to nonlinear, dynamic general equilibrium models using linear methods. Linear approximation methods are useful to characterize certain aspects of the dynamic properties of complicated models. First-order approximation techniques are not however, well suited to handle questions such as welfare comparisons across alternative stochastic of policy environments. The problem with using linearized decision rules to evaluate second-order approximations to the objective function is that some second-order terms of the objective function are ignored when using a linearized decision rule. Such problems do not arise when the policy function is approximated to second-order or higher. In this paper we derive a second order approximation to the policy function of a dynamic, rational expectations model. Our approach follows the perturbation method described in Judd (1998) and developed further by Collard and Juillard(2001). We follow Collard and Juillard closely in notation and methodology. An important difference separates this Paper from the work of Collard and Juillard. Namely, Collard and Juillard apply what they call a bias reduction procedure to capture the fact that the policy function depends on the variance of the underlying shocks. Instead, we explicitly incorporate a scale parameter for the variance of the exogenous shocks as an argument of the policy function. In approximating the policy function, we take a second order Taylor expansion with respect to the state variables as well as this scale parameter. To illustrate its applicability, the method is used to solve the dynamics of a simple neoclassical model. The Paper closes with a brief description of a set of MATLAB programs designed to implement the method.

Suggested Citation

  • Schmitt-Grohé, Stephanie & Uribe, Martín, 2001. "Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function," CEPR Discussion Papers 2963, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:2963
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=2963
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    2. Kim, Jinill & Kim, Sunghyun Henry, 2003. "Spurious welfare reversals in international business cycle models," Journal of International Economics, Elsevier, vol. 60(2), pages 471-500, August.
    3. Burnside, Craig, 1998. "Solving asset pricing models with Gaussian shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 329-340, March.
    4. Baoline Chen & Peter A. Zadrozny, 2003. "Higher-Moments in Perturbation Solution of the Linear-Quadratic Exponential Gaussian Optimal Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 21(1_2), pages 45-64, February.
    5. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    6. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    7. Woodford Michael, 2002. "Inflation Stabilization and Welfare," The B.E. Journal of Macroeconomics, De Gruyter, vol. 2(1), pages 1-53, February.
    8. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    9. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," Review of Economic Studies, Oxford University Press, vol. 37(4), pages 537-542.
    10. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    11. Jinill Kim & Sunghyun Henry Kim, 1999. "Inaccuracy of Loglinear Approximation in Welfare Calculations: the Case of International Risk Sharing," Computing in Economics and Finance 1999 251, Society for Computational Economics.
    12. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Miroljub Labus & Milica Labus, 2019. "Monetary Transmission Channels in DSGE Models: Decomposition of Impulse Response Functions Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 27-50, January.
    3. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    4. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    5. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252, Elsevier.
    6. Francesca Marino, 2016. "The Italian productivity slowdown in a Real Business Cycle perspective," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 63(2), pages 171-193, June.
    7. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    8. Ajevskis Viktors, 2017. "Semi-global solutions to DSGE models: perturbation around a deterministic path," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-28, April.
    9. Williams, Noah, 2004. "Small noise asymptotics for a stochastic growth model," Journal of Economic Theory, Elsevier, vol. 119(2), pages 271-298, December.
    10. Lan, Hong & Meyer-Gohde, Alexander, 2014. "Solvability of perturbation solutions in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 366-388.
    11. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    12. Kim, Jinill & Kim, Sunghyun Henry, 2003. "Spurious welfare reversals in international business cycle models," Journal of International Economics, Elsevier, vol. 60(2), pages 471-500, August.
    13. Alfredo Villca, 2019. "Confronting DSGE model with data," Documentos de Trabajo CIEF 017803, Universidad EAFIT.
    14. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    15. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    16. Sergio Ocampo Diaz, 2013. "Rule-of-Thumb Consumers, Nominal Rigidities and the Design of Interest Rate Rules," Research Department Publications IDB-WP-400, Inter-American Development Bank, Research Department.
    17. Martin Møller Andreasen, 2008. "Ensuring the Validity of the Micro Foundation in DSGE Models," CREATES Research Papers 2008-26, Department of Economics and Business Economics, Aarhus University.
    18. Jang-Ok Cho & Thomas Cooley & Hyung Seok Kim, 2015. "Business Cycle Uncertainty and Economic Welfare," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 18(2), pages 185-200, April.
    19. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    20. Ambler, Steve & Guay, Alain & Phaneuf, Louis, 2012. "Endogenous business cycle propagation and the persistence problem: The role of labor-market frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 47-62.

    More about this item

    Keywords

    matlab code; second order approximation; solving dynamic general equilibrium models;
    All these keywords.

    JEL classification:

    • E00 - Macroeconomics and Monetary Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:2963. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://www.cepr.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.