IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Is It Worth Refining Linear Approximations to Non-Linear Rational Expectations Models?

  • Alfonso Novales


    (Univ. Complutense de Madrid)

  • Javier J. PÈrez


    (centrA, and Univ. Pablo de Olavide de Sevilla)

We characterize the balanced growth path of the basic neoclassical growth economy using standard numerical solution methods which solve a linear or log-linear approximation to the economic model, as well as methods which preserve the nonlinearity in the original model. We also apply the same methods adding indivisible labor to the basic model, and to a monetary version of that economy, subject to a cash-in-advance constraint. In a unified framework, we show that log-linear approximations should generally be preferred to linear approximations. We also provide evidence that preserving the original nonlinear structure of the model when computing the numerical solution generally yields minor gains in accuracy. Methods that use either a linear or a log-linear approximation to the model can produce solutions as accurate as the parameterized expectations method. However, in extreme parametric cases, the solution may be rather sensible to small numerical errors, and even a log-linear approximation may then be inappropriate. Methods using the nonlinear structure of the original model can then perform significantly better.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by Society for Computational Economics in its journal Computational Economics.

Volume (Year): 23 (2004)
Issue (Month): 4 (06)
Pages: 343-377

in new window

Handle: RePEc:kap:compec:v:23:y:2004:i:4:p:343-377
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christiano, Lawrence J, 1990. "Linear-Quadratic Approximation and Value-Function Iteration: A Comparison," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 99-113, January.
  2. Lawrence J. Christiano & Jonas D.M. Fisher, 1997. "Algorithms for solving dynamic models with occasionally binding constraints," Working Paper Series, Macroeconomic Issues WP-97-15, Federal Reserve Bank of Chicago.
  3. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-70, November.
  4. Cooley, T.F. & Hansen, G.D., 1988. "The Inflation Tax In A Real Business Cycle Model," Papers 88-05, Rochester, Business - General.
  5. Albert Marcet & David A. Marshall, 1994. "Solving nonlinear rational expectations models by parameterized expectations: convergence to stationary solutions," Working Paper Series, Macroeconomic Issues 94-20, Federal Reserve Bank of Chicago.
  6. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
  7. Alfonso Novales & Emilio Dominguez & Javier J. Perez & Jesus Ruiz, 1998. "Solving Non-linear Rational Expectations Models By Eigenvalue-Eigenvector Decompositions," QM&RBC Codes 124, Quantitative Macroeconomics & Real Business Cycles.
  8. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
  9. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  10. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
  11. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-11, July.
  12. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
  13. Gary D. Hansen & Edward C. Prescott, 1992. "Recursive methods for computing equilibria of business cycle models," Discussion Paper / Institute for Empirical Macroeconomics 36, Federal Reserve Bank of Minneapolis.
  14. Alfonso Novales & Javier J. Pérez, 2002. "Is it Worth Refining Linear Approximations to Non-Linear Rational Expectations Models?," Economic Working Papers at Centro de Estudios Andaluces E2002/15, Centro de Estudios Andaluces.
  15. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
  16. King, Robert G & Plosser, Charles I & Rebelo, Sergio T, 2002. "Production, Growth and Business Cycles: Technical Appendix," Computational Economics, Society for Computational Economics, vol. 20(1-2), pages 87-116, October.
  17. Finn E. Kydland & Edward C. Prescott, 1994. "The computational experiment: an econometric tool," Staff Report 178, Federal Reserve Bank of Minneapolis.
  18. Binder,M. & Pesaran,H.M., 1995. "Multivariate Rational Expectations Models and Macroeconomic Modelling: A Review and Some New Results," Cambridge Working Papers in Economics 9415, Faculty of Economics, University of Cambridge.
  19. Albert Marcet & Guido Lorenzoni, 1998. "The Parameterized Expectations Approach: Some Practical Issues," QM&RBC Codes 128, Quantitative Macroeconomics & Real Business Cycles.
  20. Lucas, Robert E, Jr, 1980. "Methods and Problems in Business Cycle Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 12(4), pages 696-715, November.
  21. Ilaski Barañano & Amaia Iza & Jesús Vázquez, 2002. "A comparison between the log-linear and the parameterized expectations methods," Spanish Economic Review, Springer, vol. 4(1), pages 41-60.
  22. Sims, Christopher A, 1990. "Solving the Stochastic Growth Model by Backsolving with a Particular Nonlinear Form for the Decision Rule," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 45-47, January.
  23. Collard, Fabrice & Juillard, Michel, 1999. "Accuracy of stochastic perturbuation methods: the case of asset pricing models," CEPREMAP Working Papers (Couverture Orange) 9922, CEPREMAP.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:23:y:2004:i:4:p:343-377. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.