IDEAS home Printed from https://ideas.repec.org/p/vie/viennp/0510.html
   My bibliography  Save this paper

Evaluating Approximate Equilibria of Dynamic Economic Models

Author

Abstract

This paper evaluates the performances of Perturbation Methods, the Parameterized Expectations Algorithm and Projection Methods in finding approximate decision rules of the basic neoclassical stochastic growth model. In contrast to the existing literature, we focus on comparing numerical methods for a given functional form of the approximate decision rules, and we repeat the evaluation for many di®erent parameter sets. We ¯nd that signi¯cant gains in accuracy can be achieved by moving from linear to higher-order approximations. Our results show further that among linear and quadratic approximations, Perturbation Methods yield particularly good results, whereas Projection Methods are well suited to derive higher-order approximations. Finally we show that although the structural parameters of the model economy have a large e®ect on the accuracy of numerical approximations, the ranking of competing methods is largely independent from the calibration.

Suggested Citation

  • Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
  • Handle: RePEc:vie:viennp:0510
    as

    Download full text from publisher

    File URL: http://homepage.univie.ac.at/Papers.Econ/RePEc/vie/viennp/vie0510.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    3. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    4. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    5. Javier J. Pérez, 2004. "A Log-Linear Homotopy Approach to Initialize the Parameterized Expectations Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 24(1), pages 59-75, August.
    6. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    7. Uhlig, H.F.H.V.S., 1995. "A toolkit for analyzing nonlinear dynamic stochastic models easily," Discussion Paper 1995-97, Tilburg University, Center for Economic Research.
    8. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    9. Alfonso Novales & Javier J. PÈrez, 2004. "Is It Worth Refining Linear Approximations to Non-Linear Rational Expectations Models?," Computational Economics, Springer;Society for Computational Economics, vol. 23(4), pages 343-377, June.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    11. Eric Swanson & Gary Anderson & Andrew Levin, 2003. "Higher-Order Solutions to Dynamic, Discrete-Time Rational Expectations Models: Methods and an Application to Optimal Monetary Policy," Computing in Economics and Finance 2003 64, Society for Computational Economics.
    12. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    13. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    14. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    15. Heer, Burkhard & Maußner, Alfred, 2008. "Computation Of Business Cycle Models: A Comparison Of Numerical Methods," Macroeconomic Dynamics, Cambridge University Press, vol. 12(05), pages 641-663, November.
    16. Maliar, Lilia & Maliar, Serguei, 2003. "Parameterized Expectations Algorithm and the Moving Bounds," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 88-92, January.
    17. Gary S. Anderson, 2000. "A Systematic Comparison Of Alternative Linear Rational Expectation Model Solution Techniques," Computing in Economics and Finance 2000 142, Society for Computational Economics.
    18. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    19. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    20. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evans, Martin D.D. & Hnatkovska, Viktoria, 2012. "A method for solving general equilibrium models with incomplete markets and many financial assets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1909-1930.
    2. Martin D. D. Evans & Viktoria Hnatkovska, 2005. "Solving General Equilibrium Models with Incomplete Markets and Many Assets," NBER Technical Working Papers 0318, National Bureau of Economic Research, Inc.
    3. Paul Pichler, 2007. "On the accuracy of low-order projection methods," Economics Bulletin, AccessEcon, vol. 3(50), pages 1-8.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vie:viennp:0510. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paper Administrator). General contact details of provider: http://www.univie.ac.at/vwl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.