IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2003-34.html
   My bibliography  Save this paper

Some results on the solution of the neoclassical growth model

Author

Listed:
  • Jesus Fernandez-Villaverde
  • Juan Francisco Rubio-Ramírez

Abstract

This paper presents some new results on the solution of the stochastic neoclassical growth model with leisure. We use the method of Judd (2003) to explore how to change variables in the computed policy functions that characterize the behavior of the economy. We find a simple closed-form relation between the parameters of the linear and the loglinear solution of the model. We extend this approach to a general class of changes of variables and show how to find the optimal transformation. We thus reduce the average absolute Euler equation errors of the solution of the model by a factor of three. We also demonstrate how changes of variables correct for variations in the volatility of the economy even if we work with first-order policy functions and how we can keep a linear representation of the model’s laws of motion if we use a nearly optimal transformation. We conclude by discussing how to apply our results to estimate dynamic equilibrium economies.

Suggested Citation

  • Jesus Fernandez-Villaverde & Juan Francisco Rubio-Ramírez, 2003. "Some results on the solution of the neoclassical growth model," FRB Atlanta Working Paper 2003-34, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2003-34
    as

    Download full text from publisher

    File URL: http://www.frbatlanta.org/filelegacydocs/wp0334.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Benhabib, Jess & Schmitt-Grohe, Stephanie & Uribe, Martin, 2001. "The Perils of Taylor Rules," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 40-69, January.
    2. Christiano, Lawrence J, 1990. "Linear-Quadratic Approximation and Value-Function Iteration: A Comparison," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 99-113, January.
    3. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    4. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    5. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    6. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    7. Ellen R. McGrattan & Edward C. Prescott, 2000. "Is the stock market overvalued?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall, pages 20-40.
    8. Jinill Kim & Sunghyun Kim & Ernst Schaumburg & Christopher A. Sims, 2003. "Calculating and Using Second Order Accurate Solutions of Discrete Time," Levine's Bibliography 666156000000000284, UCLA Department of Economics.
    9. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    10. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    11. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," Review of Economic Studies, Oxford University Press, vol. 61(1), pages 3-17.
    12. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    13. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    14. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
    15. King, Robert G & Plosser, Charles I & Rebelo, Sergio T, 2002. "Production, Growth and Business Cycles: Technical Appendix," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 87-116, October.
    16. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    17. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2003-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elaine Clokey). General contact details of provider: http://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.