IDEAS home Printed from https://ideas.repec.org/p/red/sed010/239.html
   My bibliography  Save this paper

Perturbation Methods for Markov-Switching Models

Author

Listed:
  • Tao Zha

    (FRB Atlanta)

  • Juan F. Rubio-Ramirez

    (Duke U and FRB Atlanta)

  • Daniel F. Waggoner

    (FRB Atlanta)

  • Andrew T. Foerster

    (Duke University)

Abstract

This paper develops a methodology for approximating rational expectations models with Markov Switching. Specifically, we consider how to do both linear and higher-order approximations, including cases when each individual regime is associated with it's own steady state. We document the importance of using higher-order approximations in economies that have parameter switching that affects variances. We illustrate our algorithm by considering a standard real business cycle economy with Markov switching in total factor productivity drift and variance and assess the accuracy of our approximations. Our method allows for further empirical analysis of economies with Markov switching.

Suggested Citation

  • Tao Zha & Juan F. Rubio-Ramirez & Daniel F. Waggoner & Andrew T. Foerster, 2010. "Perturbation Methods for Markov-Switching Models," 2010 Meeting Papers 239, Society for Economic Dynamics.
  • Handle: RePEc:red:sed010:239
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1059-1087.
    2. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    3. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    4. Francesco Bianchi & Leonardo Melosi, 2012. "Modeling the Evolution of Expectations and Uncertainty in General Equilibrium," PIER Working Paper Archive 13-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Huixin Bi & Nora Traum, 2012. "Estimating Sovereign Default Risk," American Economic Review, American Economic Association, vol. 102(3), pages 161-166, May.
    6. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    7. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711.
    8. Lars Svensson & Noah Williams, 2005. "Monetary Policy with Model Uncertainty: Distribution Forecast Targeting," NBER Working Papers 11733, National Bureau of Economic Research, Inc.
    9. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    10. Davig, Troy & Leeper, Eric M. & Walker, Todd B., 2011. "Inflation and the fiscal limit," European Economic Review, Elsevier, vol. 55(1), pages 31-47, January.
    11. Troy Davig & Taeyoung Doh, 2014. "Monetary Policy Regime Shifts and Inflation Persistence," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 862-875, December.
    12. Kubler, Felix & Schmedders, Karl, 2010. "Competitive equilibria in semi-algebraic economies," Journal of Economic Theory, Elsevier, vol. 145(1), pages 301-330, January.
    13. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    14. Frank Schorfheide, 2005. "Learning and Monetary Policy Shifts," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 392-419, April.
    15. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    16. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2011. "Minimal state variable solutions to Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2150-2166.
    17. Davig, Troy & Leeper, Eric M. & Walker, Todd B., 2010. ""Unfunded liabilities" and uncertain fiscal financing," Journal of Monetary Economics, Elsevier, vol. 57(5), pages 600-619, July.
    18. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," Review of Economic Studies, Oxford University Press, vol. 80(2), pages 463-490.
    19. Troy Davig & Eric M. Leeper, 2007. "Generalizing the Taylor Principle," American Economic Review, American Economic Association, vol. 97(3), pages 607-635, June.
    20. Manuel S. Santos & Adrian Peralta-Alva, 2005. "Accuracy of Simulations for Stochastic Dynamic Models," Econometrica, Econometric Society, vol. 73(6), pages 1939-1976, November.
    21. Rudebusch, Glenn D. & Swanson, Eric T., 2008. "Examining the bond premium puzzle with a DSGE model," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 111-126, October.
    22. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    23. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    24. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    25. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    26. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Juan F. Rubio-Ramirez, 2010. "Fortune or virtue: time-variant volatilities versus parameter drifting," Working Papers 10-14, Federal Reserve Bank of Philadelphia.
    27. Francesco Bianchi & Leonardo Melosi, 2016. "Modeling The Evolution Of Expectations And Uncertainty In General Equilibrium," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 717-756, May.
    28. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2009. "Understanding Markov-switching rational expectations models," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1849-1867, September.
    29. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    30. Ruchira Datta, 2010. "Finding all Nash equilibria of a finite game using polynomial algebra," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 55-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foerster, Andrew & Rubio-Ramírez, Juan Francisco & Waggoner, Daniel F & Zha, Tao, 2013. "Perturbation Methods for Markov-Switching DSGE Models," CEPR Discussion Papers 9464, C.E.P.R. Discussion Papers.
    2. Bianchi, Francesco, 2016. "Methods for measuring expectations and uncertainty in Markov-switching models," Journal of Econometrics, Elsevier, vol. 190(1), pages 79-99.
    3. Andrew T. Foerster, 2016. "Monetary Policy Regime Switches And Macroeconomic Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(1), pages 211-230, February.
    4. Francesco Bianchi & Leonardo Melosi, 2014. "Dormant Shocks and Fiscal Virtue," NBER Macroeconomics Annual, University of Chicago Press, vol. 28(1), pages 1-46.
    5. Francesco Bianchi & Leonardo Melosi, 2018. "Constrained Discretion and Central Bank Transparency," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 187-202, March.
    6. Baele, Lieven & Bekaert, Geert & Cho, Seonghoon & Inghelbrecht, Koen & Moreno, Antonio, 2015. "Macroeconomic regimes," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 51-71.
    7. Shayan Zakipour-Saber, 2019. "Monetary policy regimes and inflation persistence in the United Kingdom," Working Papers 895, Queen Mary University of London, School of Economics and Finance.
    8. Zakipour-Saber, Shayan, 2019. "State-dependent Monetary Policy Regimes," Research Technical Papers 4/RT/19, Central Bank of Ireland.
    9. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    10. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2011. "Minimal state variable solutions to Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2150-2166.
    11. Francesco Bianchi & Leonardo Melosi, 2017. "Escaping the Great Recession," American Economic Review, American Economic Association, vol. 107(4), pages 1030-1058, April.
    12. Chen, Xiaoshan & Kirsanova, Tatiana & Leith, Campbell, 2017. "How optimal is US monetary policy?," Journal of Monetary Economics, Elsevier, vol. 92(C), pages 96-111.
    13. Francesco Bianchi & Cosmin Ilut, 2017. "Monetary/Fiscal Policy Mix and Agent's Beliefs," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 26, pages 113-139, October.
    14. Juan Rubio-Ramirez & Jesus Fernandez-Villaverde & Pablo A. Guerron-Quintana, 2010. "Fortune or Virtue: Time Variant Volatilities versus Parameter Drifting in U.S. Data," 2010 Meeting Papers 270, Society for Economic Dynamics.
    15. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    16. Lhuissier, Stéphane & Zabelina, Margarita, 2015. "On the stability of Calvo-style price-setting behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 57(C), pages 77-95.
    17. Higgins, C. Richard, 2017. "Estimating general equilibrium models with stochastic volatility and changing parameters," Economic Modelling, Elsevier, vol. 66(C), pages 163-170.
    18. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," Review of Economic Studies, Oxford University Press, vol. 80(2), pages 463-490.
    19. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    20. Kostas Mavromatis, 2018. "U.S. Monetary Regimes and Optimal Monetary Policy in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1441-1478, October.

    More about this item

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed010:239. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.