IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15909.html
   My bibliography  Save this paper

Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors

Author

Listed:
  • Eric M. Aldrich
  • Jesús Fernández-Villaverde
  • A. Ronald Gallant
  • Juan F. Rubio-Ramírez

Abstract

This paper shows how to build algorithms that use graphics processing units (GPUs) installed in most modern computers to solve dynamic equilibrium models in economics. In particular, we rely on the compute unified device architecture (CUDA) of NVIDIA GPUs. We illustrate the power of the approach by solving a simple real business cycle model with value function iteration. We document improvements in speed of around 200 times and suggest that even further gains are likely.

Suggested Citation

  • Eric M. Aldrich & Jesús Fernández-Villaverde & A. Ronald Gallant & Juan F. Rubio-Ramírez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," NBER Working Papers 15909, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15909
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15909.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    3. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • E0 - Macroeconomics and Monetary Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.