IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_2008_num_183_2_7809.html
   My bibliography  Save this article

Méthodes de simulation des modèles stochastiques d'équilibre général

Author

Listed:
  • Tarik Ocaktan
  • Michel Juillard

Abstract

[eng] This paper presents the numerical methods commonly used today to solve dynamic stochastic general equilibrium (DSGE) models. We begin by introducing a canonical model of dynamic optimization, which is the crucial element in this approach. We then review value-function iteration, the projection method, the parameterized expectation approach (PEA), and the perturbation method. Linearization, a very popular method in the literature, is presented as a special case of the perturbation method. [fre] Ce chapitre introduit les méthodes de simulation utilisées aujourd’hui pour résoudre les modèles d’équilibre général. Après la présentation d’un modèle canonique d’optimisation dynamique qui est au coeur de cette problématique, nous passons en revue les méthodes d’itération sur la fonction valeur, de projection, de paramétrisation des anticipations (PEA) et la méthode des perturbations. La linéarisation, très populaire dans cette littérature, est présentée comme un cas particulier de la méthode des perturbations.

Suggested Citation

  • Tarik Ocaktan & Michel Juillard, 2008. "Méthodes de simulation des modèles stochastiques d'équilibre général," Économie et Prévision, Programme National Persée, vol. 183(2), pages 115-126.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_2008_num_183_2_7809
    DOI: 10.3406/ecop.2008.7809
    Note: DOI:10.3406/ecop.2008.7809
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.2008.7809
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_2008_num_183_2_7809
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.2008.7809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    2. Christiano, Lawrence J, 2002. "Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 21-55, October.
    3. King, Robert G & Watson, Mark W, 2002. "System Reduction and Solution Algorithms for Singular Linear Difference Systems under Rational Expectations," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 57-86, October.
    4. Christiano, Lawrence J, 1990. "Linear-Quadratic Approximation and Value-Function Iteration: A Comparison," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 99-113, January.
    5. McGrattan, Ellen R., 1996. "Solving the stochastic growth model with a finite element method," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 19-42.
    6. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252, Elsevier.
    7. Tauchen, George, 1990. "Solving the Stochastic Growth Model by Using Quadrature Methods and Value-Function Iterations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 49-51, January.
    8. Miranda, Mario J, 1998. "Numerical Strategies for Solving the Nonlinear Rational Expectations Commodity Market Model," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 71-87, April.
    9. Wright, Brian D & Williams, Jeffrey C, 1982. "The Economic Role of Commodity Storage," Economic Journal, Royal Economic Society, vol. 92(367), pages 596-614, September.
    10. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    11. Fabrice Collard & Patrick Feve & Corinne Perraudin, 2000. "Solving and Estimating Dynamic Models under Rational Expectations," Computational Economics, Springer;Society for Computational Economics, vol. 15(3), pages 201-221, June.
    12. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    13. Albert Marcet & David A. Marshall, 1994. "Solving nonlinear rational expectations models by parameterized expectations: convergence to stationary solutions," Discussion Paper / Institute for Empirical Macroeconomics 91, Federal Reserve Bank of Minneapolis.
    14. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    15. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    16. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    17. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    18. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    19. Miranda, Mario J & Helmberger, Peter G, 1988. "The Effects of Commodity Price Stabilization Programs," American Economic Review, American Economic Association, vol. 78(1), pages 46-58, March.
    20. Burkhard Heer & Alfred Maußner, 2024. "Dynamic General Equilibrium Modeling," Springer Texts in Business and Economics, Springer, edition 3, number 978-3-031-51681-8, October.
    21. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
    22. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Maggiar & Antoine Devulder & Christophe Cahn & Stéphane Adjemian, 2008. "Variantes en univers incertain," Économie et Prévision, Programme National Persée, vol. 183(2), pages 223-238.
    2. Tsasa Vangu, Jean-Paul Kimbambu, 2014. "Diagnostic de la politique monétaire en Rép. Dém. Congo – Approche par l’Equilibre Général Dynamique Stochastique," Dynare Working Papers 38, CEPREMAP.
    3. Marchiori, Luca, 2011. "Demographic trends and international capital flows in an integrated world," Economic Modelling, Elsevier, vol. 28(5), pages 2100-2120, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    3. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    4. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    5. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    6. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, April.
    7. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    8. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    9. Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
    10. Evans, Martin D.D. & Hnatkovska, Viktoria, 2012. "A method for solving general equilibrium models with incomplete markets and many financial assets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1909-1930.
    11. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    12. Martin D. D. Evans & Viktoria Hnatkovska, 2005. "Solving General Equilibrium Models with Incomplete Markets and Many Assets," NBER Technical Working Papers 0318, National Bureau of Economic Research, Inc.
    13. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Japanese Economic Association, vol. 70(1), pages 51-104, March.
    14. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," EconStor Preprints 269876, ZBW - Leibniz Information Centre for Economics.
    15. Christophe Gouel, 2013. "Comparing Numerical Methods for Solving the Competitive Storage Model," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 267-295, February.
    16. Alexander Richter & Nathaniel Throckmorton & Todd Walker, 2014. "Accuracy, Speed and Robustness of Policy Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 445-476, December.
    17. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," MPRA Paper 116480, University Library of Munich, Germany.
    18. Ajevskis Viktors, 2017. "Semi-global solutions to DSGE models: perturbation around a deterministic path," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-28, April.
    19. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    20. Kato, Ryo & Nishiyama, Shin-Ichi, 2005. "Optimal monetary policy when interest rates are bounded at zero," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 97-133, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_2008_num_183_2_7809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.