IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v23y2019i06p2544-2571_00.html

Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach

Author

Listed:
  • Ajevskis, Viktors

Abstract

This study presents a method for constructing a sequence of approximate solutions of increasing accuracy to general equilibrium models on nonlocal domains. The method is based on a technique originated from dynamical systems theory. The approximate solutions are constructed employing the Contraction Mapping Theorem and the fact that the solutions to general equilibrium models converge to a steady state. Under certain nonlocal conditions, the convergence of the approximate solutions to the true solution is proved. We also show that the proposed approach can be treated as a rigorous proof of convergence for the extended path algorithm in a class of nonlinear rational expectation models.

Suggested Citation

  • Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
  • Handle: RePEc:cup:macdyn:v:23:y:2019:i:06:p:2544-2571_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100517000803/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montes-Galdón, Carlos & Ajevskis, Viktors & Brázdik, František & Garcia, Pablo & Gatt, William & Lima, Diana & Mavromatis, Kostas & Ortega, Eva & Papadopoulou, Niki & De Lorenzo, Ivan & Kolb, Benedikt, 2024. "Using structural models to understand macroeconomic tail risks," Occasional Paper Series 357, European Central Bank.

    More about this item

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D9 - Microeconomics - - Micro-Based Behavioral Economics
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:23:y:2019:i:06:p:2544-2571_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.