IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v8y2017i3p851-893.html
   My bibliography  Save this article

How to solve dynamic stochastic models computing expectations just once

Author

Listed:
  • Kenneth L. Judd
  • Lilia Maliar
  • Serguei Maliar
  • Inna Tsener

Abstract

We introduce a computational technique—precomputation of integrals—that makes it possible to construct conditional expectation functions in dynamic stochastic models in the initial stage of a solution procedure. This technique is very general: it works for a broad class of approximating functions, including piecewise polynomials; it can be applied to both Bellman and Euler equations; and it is compatible with both continuous‐state and discrete‐state shocks. In the case of normally distributed shocks, the integrals can be constructed in a closed form. After the integrals are precomputed, we can solve stochastic models as if they were deterministic. We illustrate this technique using one‐ and multi‐agent growth models with continuous‐state shocks (and up to 60 state variables), as well as Aiyagari's (1994) model with discrete‐state shocks. Precomputation of integrals saves programming efforts, reduces computational burden, and increases the accuracy of solutions. It is of special value in computationally intense applications. MATLAB codes are provided.

Suggested Citation

  • Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
  • Handle: RePEc:wly:quante:v:8:y:2017:i:3:p:851-893
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    2. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    3. Maliar, Lilia & Maliar, Serguei, 2005. "Solving nonlinear dynamic stochastic models: an algorithm computing value function by simulations," Economics Letters, Elsevier, vol. 87(1), pages 135-140, April.
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    5. Maliar, Serguei & Maliar, Lilia & Judd, Kenneth, 2011. "Solving the multi-country real business cycle model using ergodic set methods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 207-228, February.
    6. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2011. "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," Quantitative Economics, Econometric Society, vol. 2(2), pages 173-210, July.
    7. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    8. Krueger, Dirk & Kubler, Felix, 2004. "Computing equilibrium in OLG models with stochastic production," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1411-1436, April.
    9. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    10. Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800, Elsevier.
    11. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    12. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    13. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    14. Den Haan, Wouter J., 2010. "Comparison of solutions to the incomplete markets model with aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 4-27, January.
    15. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    16. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    17. Miranda, Mario J & Helmberger, Peter G, 1988. "The Effects of Commodity Price Stabilization Programs," American Economic Review, American Economic Association, vol. 78(1), pages 46-58, March.
    18. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    19. Santos, Manuel S., 1999. "Numerical solution of dynamic economic models," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 5, pages 311-386, Elsevier.
    20. Albert Marcet & Guido Lorenzoni, 1998. "Parameterized expectations approach; Some practical issues," Economics Working Papers 296, Department of Economics and Business, Universitat Pompeu Fabra.
    21. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    22. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    23. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. How to Solve Dynamic Stochastic Models Computing Expectations Just Once
      by Christian Zimmermann in NEP-DGE blog on 2011-10-24 08:00:06

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeshi Fukasawa, 2024. "Simple method for efficiently solving dynamic models with continuous actions using policy gradient," Papers 2407.04227, arXiv.org.
    2. Fabian Goessling, 2019. "Exact Expectations: Efficient Calculation of DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 977-990, March.
    3. Mahdi Ebrahimi Kahou & Jesús Fernández-Villaverde & Jesse Perla & Arnav Sood, 2021. "Exploiting Symmetry in High-Dimensional Dynamic Programming," CESifo Working Paper Series 9161, CESifo.
    4. Guerra Vallejos, Ernesto & Bobenrieth Hochfarber, Eugenio & Bobenrieth Hochfarber, Juan & Wright, Brian D., 2021. "Solving dynamic stochastic models with multiple occasionally binding constraints," Economic Modelling, Elsevier, vol. 105(C).
    5. Elisa Faraglia & Albert Marcet & Rigas Oikonomou & Andrew Scott, 2019. "Government Debt Management: The Long and the Short of It," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(6), pages 2554-2604.
    6. Elisa Faraglia & Albert Marcet & Rigas Oikonomou & Andrew Scott, 2014. "Government Debt Management: The Long and the Short of It (Plus Appendix)," Working Papers 799, Barcelona School of Economics.
    7. Rubini, Loris & Moro, Alessio, 2019. "Stochastic Structural Change," MPRA Paper 96144, University Library of Munich, Germany.
    8. Lilia Maliar & Serguei Maliar & Sébastien Villemot, 2013. "Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 307-325, October.
    9. Ayşe Kabukçuoğlu & Enrique Martínez-García, 2021. "A Generalized Time Iteration Method for Solving Dynamic Optimization Problems with Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 435-460, August.
    10. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    11. Karolos Arapakis, 2023. "A Method to Pre-compile Numerical Integrals When Solving Stochastic Dynamic Problems," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 593-610, February.
    12. Luigi Bocola, 2016. "The Pass-Through of Sovereign Risk," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 879-926.
    13. de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    14. Gary S. Anderson, 2018. "Reliably Computing Nonlinear Dynamic Stochastic Model Solutions: An Algorithm with Error Formulas," Finance and Economics Discussion Series 2018-070, Board of Governors of the Federal Reserve System (U.S.).
    15. Dennis, Richard, 2024. "Using a hyperbolic cross to solve non-linear macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    16. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    17. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Springer, vol. 70(1), pages 51-104, March.
    18. Ivan Rudik & Derek Lemoine & Maxwell Rosenthal, 2018. "General Bayesian Learning in Dynamic Stochastic Models: Estimating the Value of Science Policy," 2018 Meeting Papers 369, Society for Economic Dynamics.
    19. Thomas H. Jørgensen & Maxime Tô, 2020. "Robust Estimation of Finite Horizon Dynamic Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 499-509, February.
    20. Jeppe Druedahl, 2021. "A Guide on Solving Non-convex Consumption-Saving Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 747-775, October.
    21. Gu, Shijun & Jia, Chengcheng, 2022. "Firm dynamics and SOE transformation during China’s Economic Reform," Journal of International Money and Finance, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    3. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    6. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    7. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    8. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    9. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    10. Christophe Gouel, 2013. "Comparing Numerical Methods for Solving the Competitive Storage Model," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 267-295, February.
    11. de Castro, Luciano & Galvao, Antonio F. & Muchon, Andre, 2023. "Numerical Solution of Dynamic Quantile Models," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    12. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2009. "Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models," NBER Working Papers 15296, National Bureau of Economic Research, Inc.
    13. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    14. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    15. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    16. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    17. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    18. Lilia Maliar & Serguei Maliar & Sébastien Villemot, 2013. "Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 307-325, October.
    19. Dorofeenko, Victor & Lee, Gabriel S. & Salyer, Kevin D., 2010. "A new algorithm for solving dynamic stochastic macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 388-403, March.
    20. Gamba, Andrea & Tesser, Matteo, 2009. "Structural estimation of real options models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 798-816, April.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:8:y:2017:i:3:p:851-893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.