IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v35y2011i2p207-228.html
   My bibliography  Save this article

Solving the multi-country real business cycle model using ergodic set methods

Author

Listed:
  • Maliar, Serguei
  • Maliar, Lilia
  • Judd, Kenneth

Abstract

We use the stochastic simulation algorithm, described in Judd et al. (2009), and the cluster-grid algorithm, developed in Judd et al. (2010a), to solve a collection of multi-country real business cycle models. The following ingredients help us reduce the cost in high-dimensional problems: an endogenous grid enclosing the ergodic set, linear approximation methods, fixed-point iteration and efficient integration methods, such as non-product monomial rules and Monte Carlo integration combined with regression. We show that high accuracy in intratemporal choice is crucial for the overall accuracy of solutions and offer two approaches, precomputation and iteration-on-allocation, that can solve for intratemporal choice both accurately and quickly. We also implement a hybrid solution algorithm that combines the perturbation and accurate intratemporal-choice methods.

Suggested Citation

  • Maliar, Serguei & Maliar, Lilia & Judd, Kenneth, 2011. "Solving the multi-country real business cycle model using ergodic set methods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 207-228, February.
  • Handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:207-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00218-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    2. Juillard, Michel & Villemot, Sébastien, 2011. "Multi-country real business cycle models: Accuracy tests and test bench," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 178-185, February.
    3. Kollmann, Robert & Kim, Jinill & Kim, Sunghyun H., 2011. "Solving the multi-country Real Business Cycle model using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 203-206, February.
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    5. Maliar, Lilia & Maliar, Serguei, 2001. "Heterogeneity in capital and skills in a neoclassical stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1367-1397, September.
    6. Lilia Maliar & Serguei Maliar, 2003. "The Representative Consumer in the Neoclassical Growth Model with Idiosyncratic Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 6(2), pages 368-380, April.
    7. den Haan, Wouter J & Marcet, Albert, 1990. "Solving the Stochastic Growth Model by Parameterizing Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 31-34, January.
    8. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    9. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(01), pages 45-75, January.
    10. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2010. "Computational suite of models with heterogeneous agents: Incomplete markets and aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 1-3, January.
    11. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2009. "Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models," NBER Working Papers 15296, National Bureau of Economic Research, Inc.
    12. Lilia Maliar & Serguei Maliar, 2005. "Parameterized Expectations Algorithm: How to Solve for Labor Easily," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 269-274, June.
    13. Maliar, Lilia & Maliar, Serguei, 2003. "Parameterized Expectations Algorithm and the Moving Bounds," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 88-92, January.
    14. Wouter J. Den Haan & Kenneth L. Judd & Michel Juillard, 2010. "Computational suite of models with heterogeneous agents: Multi-country real business cycle models," Post-Print hal-00765828, HAL.
    15. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    16. Den Haan, Wouter J., 1990. "The optimal inflation path in a Sidrauski-type model with uncertainty," Journal of Monetary Economics, Elsevier, vol. 25(3), pages 389-409, June.
    17. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2011. "Computational suite of models with heterogeneous agents II: Multi-country real business cycle models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 175-177, February.
    18. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    2. Maliar, Lilia & Maliar, Serguei, 2013. "Envelope condition method versus endogenous grid method for solving dynamic programming problems," Economics Letters, Elsevier, vol. 120(2), pages 262-266.
    3. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    4. Andrei Jirnyi & Vadym Lepetyuk, 2011. "A reinforcement learning approach to solving incomplete market models with aggregate uncertainty," Working Papers. Serie AD 2011-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    5. Rabitsch, Katrin & Stepanchuk, Serhiy & Tsyrennikov, Viktor, 2015. "International portfolios: A comparison of solution methods," Journal of International Economics, Elsevier, vol. 97(2), pages 404-422.
    6. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    7. Dmitriev, Alexandre & Roberts, Ivan, 2012. "International business cycles with complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 862-875.
    8. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    9. Akgün Uğur & Chioveanu Ioana, 2013. "Loyalty Discounts," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 13(2), pages 655-685, September.
    10. Malin, Benjamin A. & Krueger, Dirk & Kubler, Felix, 2011. "Solving the multi-country real business cycle model using a Smolyak-collocation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 229-239, February.
    11. Lilia Maliar & Serguei Maliar & Sébastien Villemot, 2013. "Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 307-325, October.
    12. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    13. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, Elsevier.
    14. Tom Holden & Michael Paetz, 2012. "Efficient simulation of DSGE models with inequality constraints," School of Economics Discussion Papers 1612, School of Economics, University of Surrey.
    15. Dmitriev, Alexandre & Roberts, Ivan, 2013. "The cost of adjustment: On comovement between the trade balance and the terms of trade," Economic Modelling, Elsevier, vol. 35(C), pages 689-700.
    16. Hubert Janos Kiss & Ismael Rodriguez‐Lara & Alfonso Rosa‐García, 2012. "On the Effects of Deposit Insurance and Observability on Bank Runs: An Experimental Study," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1651-1665, December.
    17. Stepanchuk, Serhiy & Tsyrennikov, Viktor, 2015. "Portfolio and welfare consequences of debt market dominance," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 89-101.
    18. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    19. Dmitriev, Alexandre, 2017. "Composite habits and international transmission of business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 1-34.
    20. Vadym Lepetyuk & Lilia Maliar & Serguei Maliar, 2017. "Should Central Banks Worry About Nonlinearities of their Large-Scale Macroeconomic Models?," Staff Working Papers 17-21, Bank of Canada.

    More about this item

    Keywords

    Heterogeneous agents Numerical methods Stochastic simulation Parameterized expectations algorithm Projection Perturbation;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:207-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.