IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v35y2011i2p178-185.html
   My bibliography  Save this article

Multi-country real business cycle models: Accuracy tests and test bench

Author

Listed:
  • Juillard, Michel
  • Villemot, Sébastien

Abstract

This paper describes the methodology used to compare the results of different solution algorithms for a multi-country real business cycle model. It covers in detail the structure of the model, the choice of values for the parameters, the accuracy tests used in the comparison, and the computer program specifically developed for performing the tests.

Suggested Citation

  • Juillard, Michel & Villemot, Sébastien, 2011. "Multi-country real business cycle models: Accuracy tests and test bench," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 178-185, February.
  • Handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:178-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00215-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    3. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(1), pages 3-17.
    4. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Stachurski, 2008. "Continuous State Dynamic Programming via Nonexpansive Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 141-160, March.
    2. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    3. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    4. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    5. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    6. Dario Caldara & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez & Wen Yao, 2009. "Computing DSGE Models with Recursive Preferences," PIER Working Paper Archive 09-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.
    8. Hong Lan, 2018. "Comparing Solution Methods for DSGE Models with Labor Market Search," Computational Economics, Springer;Society for Computational Economics, vol. 51(1), pages 1-34, January.
    9. Padula, Mario, 2010. "An approximate consumption function," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 404-416, March.
    10. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    11. Atolia, Manoj & Chatterjee, Santanu & Turnovsky, Stephen J., 2010. "How misleading is linearization? Evaluating the dynamics of the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1550-1571, September.
    12. Angelo M. Fasolo, 2011. "The Accuracy of Perturbation Methods to Solve Small Open Economy Models," Working Papers Series 262, Central Bank of Brazil, Research Department.
    13. Moody Chu & Chun-Hung Kuo & Matthew Lin, 2013. "Tensor Spline Approximation in Economic Dynamics with Uncertainties," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 175-198, August.
    14. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    15. Manuel S. Santos & Adrian Peralta-Alva, 2012. "Analysis of Numerical Errors," Working Papers 2012-6, University of Miami, Department of Economics.
    16. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    17. Martin D. D. Evans & Viktoria Hnatkovska, 2005. "Solving General Equilibrium Models with Incomplete Markets and Many Assets," NBER Technical Working Papers 0318, National Bureau of Economic Research, Inc.
    18. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    19. Francisco Blasques, 2013. "Solution-Driven Specification of DSGE Models," Tinbergen Institute Discussion Papers 13-062/III, Tinbergen Institute.
    20. Ayşe Kabukçuoğlu & Enrique Martínez-García, 2021. "A Generalized Time Iteration Method for Solving Dynamic Optimization Problems with Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 435-460, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:178-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.