IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v35y2011i2p178-185.html
   My bibliography  Save this article

Multi-country real business cycle models: Accuracy tests and test bench

Author

Listed:
  • Juillard, Michel
  • Villemot, Sébastien

Abstract

This paper describes the methodology used to compare the results of different solution algorithms for a multi-country real business cycle model. It covers in detail the structure of the model, the choice of values for the parameters, the accuracy tests used in the comparison, and the computer program specifically developed for performing the tests.

Suggested Citation

  • Juillard, Michel & Villemot, Sébastien, 2011. "Multi-country real business cycle models: Accuracy tests and test bench," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 178-185, February.
  • Handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:178-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00215-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," Review of Economic Studies, Oxford University Press, vol. 61(1), pages 3-17.
    2. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    4. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kollmann, Robert & Kim, Jinill & Kim, Sunghyun H., 2011. "Solving the multi-country Real Business Cycle model using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 203-206, February.
    2. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    3. Grüne, Lars & Semmler, Willi & Stieler, Marleen, 2015. "Using nonlinear model predictive control for dynamic decision problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 112-133.
    4. Cai, Yongyang & Judd, Kenneth L. & Lontzek, Thomas S. & Michelangeli, Valentina & Su, Che-Lin, 2017. "A Nonlinear Programming Method For Dynamic Programming," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 336-361, March.
    5. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2011. "Computational suite of models with heterogeneous agents II: Multi-country real business cycle models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 175-177, February.
    6. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2017. "Lower Bounds on Approximation Errors to Numerical Solutions of Dynamic Economic Models," Econometrica, Econometric Society, vol. 85, pages 991-1012, May.
    7. Malin, Benjamin A. & Krueger, Dirk & Kubler, Felix, 2011. "Solving the multi-country real business cycle model using a Smolyak-collocation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 229-239, February.
    8. Levintal, Oren, 2017. "Fifth-order perturbation solution to DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 1-16.
    9. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    10. Yongyang Cai & Kenneth Judd, 2015. "Dynamic programming with Hermite approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 245-267, June.
    11. Aryan Eftekhari & Simon Scheidegger, 2022. "High-Dimensional Dynamic Stochastic Model Representation," Papers 2202.06555, arXiv.org.
    12. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    13. Lilia Maliar & Serguei Maliar & Sébastien Villemot, 2013. "Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 307-325, October.
    14. Keshab Raj Bhattarai & Sushanta K. Mallick, 2015. "Macroeconomic policy coordination in the global economy: VAR and BVAR-DSGE analyses," EcoMod2015 8610, EcoMod.
    15. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    16. Maliar, Serguei & Maliar, Lilia & Judd, Kenneth, 2011. "Solving the multi-country real business cycle model using ergodic set methods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 207-228, February.
    17. Murakami, Hiroki & Sasaki, Hiroaki, 2020. "Economic development with public capital accumulation: The crucial role of wage flexibility on business cycles," Economic Modelling, Elsevier, vol. 93(C), pages 299-309.
    18. Villemot, Sébastien, 2012. "Accelerating the resolution of sovereign debt models using an endogenous grid method," Dynare Working Papers 17, CEPREMAP.
    19. Gordon H. Dash & Nina Kajiji & Domenic Vonella, 2018. "The role of supervised learning in the decision process to fair trade US municipal debt," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 139-168, June.
    20. Andreasen Martin M. & Zabczyk Pawel, 2015. "Efficient bond price approximations in non-linear equilibrium-based term structure models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 1-33, February.
    21. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    22. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    23. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    24. T.V.S.Ramamohan Rao, 2011. "Contemporary Relevance and Ongoing Controversies Related to the CES Production Function," Journal of Quantitative Economics, The Indian Econometric Society, vol. 9(2), pages 36-57, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    2. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    3. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    4. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    5. Dario Caldara & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez & Wen Yao, 2009. "Computing DSGE Models with Recursive Preferences," PIER Working Paper Archive 09-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.
    7. Padula, Mario, 2010. "An approximate consumption function," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 404-416, March.
    8. John Stachurski, 2008. "Continuous State Dynamic Programming via Nonexpansive Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 141-160, March.
    9. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    10. Hong Lan, 2018. "Comparing Solution Methods for DSGE Models with Labor Market Search," Computational Economics, Springer;Society for Computational Economics, vol. 51(1), pages 1-34, January.
    11. Atolia, Manoj & Chatterjee, Santanu & Turnovsky, Stephen J., 2010. "How misleading is linearization? Evaluating the dynamics of the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1550-1571, September.
    12. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    13. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    14. repec:mea:meawpa:13274 is not listed on IDEAS
    15. Pichler, Paul, 2011. "Solving the multi-country Real Business Cycle model using a monomial rule Galerkin method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 240-251, February.
    16. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    17. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    18. Stephanie Becker & Lars Grüne & Willi Semmler, 2007. "Comparing accuracy of second-order approximation and dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 65-91, August.
    19. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    20. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    21. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:35:y:2011:i:2:p:178-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.