IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v30y2007i1p65-91.html
   My bibliography  Save this article

Comparing accuracy of second-order approximation and dynamic programming

Author

Listed:
  • Stephanie Becker
  • Lars Grüne
  • Willi Semmler

    ()

Abstract

The accuracy of the solution of dynamic general equilibrium models has become a major issue. Recent papers, in which second-order approximations have been substituted for first-order, indicate that this change may yield a significant improvement in accuracy. Second order approximations have been used with considerable success when solving for the decision variables in both small and large-scale models. Additionally, the issue of accuracy is relevant for the approximate solution of value functions. In numerous dynamic decision problems, welfare is usually computed via this same approximation procedure. However, Kim and Kim (Journal of International Economics, 60, 471–500, 2003) have found a reversal of welfare ordering when they moved from first- to second-order approximations. Other researchers, studying the impact of monetary and fiscal policy on welfare, have faced similar challenges with respect to the accuracy of approximations of the value function. Employing a base-line stochastic growth model, this paper compares the accuracy of second-order approximations and dynamic programming solutions for both the decision variable and the value function as well. We find that, in a neighborhood of the equilibrium, the second-order approximation method performs satisfactorily; however, on larger regions, dynamic programming performs significantly better with respect to both the decision variable and the value function. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Stephanie Becker & Lars Grüne & Willi Semmler, 2007. "Comparing accuracy of second-order approximation and dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 65-91, August.
  • Handle: RePEc:kap:compec:v:30:y:2007:i:1:p:65-91
    DOI: 10.1007/s10614-007-9087-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-007-9087-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    2. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    3. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    4. Grune, Lars & Semmler, Willi, 2004. "Using dynamic programming with adaptive grid scheme for optimal control problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2427-2456, December.
    5. Manuel S. Santos & Jesus Vigo-Aguiar, 1998. "Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models," Econometrica, Econometric Society, vol. 66(2), pages 409-426, March.
    6. Kim, Jinill & Kim, Sunghyun Henry, 2003. "Spurious welfare reversals in international business cycle models," Journal of International Economics, Elsevier, vol. 60(2), pages 471-500, August.
    7. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," Review of Economic Studies, Oxford University Press, vol. 61(1), pages 3-17.
    8. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Optimal fiscal and monetary policy under sticky prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 198-230, February.
    9. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    10. Benigno, Pierpaolo & Woodford, Michael, 2006. "Optimal taxation in an RBC model: A linear-quadratic approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1445-1489.
    11. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    12. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    13. Benigno, Pierpaolo & Woodford, Michael, 2012. "Linear-quadratic approximation of optimal policy problems," Journal of Economic Theory, Elsevier, vol. 147(1), pages 1-42.
    14. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1, March.
    15. Gong, Gang & Semmler, Willi, 2006. "Stochastic Dynamic Macroeconomics: Theory and Empirical Evidence," OUP Catalogue, Oxford University Press, number 9780195301625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atolia, Manoj & Chatterjee, Santanu & Turnovsky, Stephen J., 2010. "How misleading is linearization? Evaluating the dynamics of the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1550-1571, September.
    2. Mittnik, Stefan & Semmler, Willi, 2012. "Regime dependence of the fiscal multiplier," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 502-522.
    3. Juan Carlos Parra-Alvarez, 2013. "A comparison of numerical methods for the solution of continuous-time DSGE models," CREATES Research Papers 2013-39, Department of Economics and Business Economics, Aarhus University.
    4. Grüne, Lars & Semmler, Willi, 2008. "Asset pricing with loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3253-3274, October.
    5. Ernst, Ekkehard & Semmler, Willi, 2010. "Global dynamics in a model with search and matching in labor and capital markets," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1651-1679, September.
    6. Alfred Greiner & Willi Semmler & Tobias Mette, 2012. "An Economic Model of Oil Exploration and Extraction," Computational Economics, Springer;Society for Computational Economics, vol. 40(4), pages 387-399, December.

    More about this item

    Keywords

    Dynamic general equilibrium model; Approximation methods; Second-order approximation; Dynamic programming;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:30:y:2007:i:1:p:65-91. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.