IDEAS home Printed from https://ideas.repec.org/p/aah/create/2013-39.html
   My bibliography  Save this paper

A comparison of numerical methods for the solution of continuous-time DSGE models

Author

Listed:
  • Juan Carlos Parra-Alvarez

    () (Aarhus University and CREATES)

Abstract

This paper evaluates the accuracy of a set of techniques that approximate the solution of continuous-time DSGE models. Using the neoclassical growth model I compare linear-quadratic, perturbation and projection methods. All techniques are applied to the HJB equation and the optimality conditions that define the general equilibrium of the economy. Two cases are studied depending on whether a closed form solution is available. I also analyze how different degrees of non-linearities affect the approximated solution. The results encourage the use of perturbations for reasonable values of the structural parameters of the model and suggest the use of projection methods when a high degree of accuracy is required.

Suggested Citation

  • Juan Carlos Parra-Alvarez, 2013. "A comparison of numerical methods for the solution of continuous-time DSGE models," CREATES Research Papers 2013-39, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2013-39
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_39.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    2. Furlanetto, Francesco & Seneca, Martin, 2014. "New Perspectives On Depreciation Shocks As A Source Of Business Cycle Fluctuations," Macroeconomic Dynamics, Cambridge University Press, vol. 18(06), pages 1209-1233, September.
    3. Chang,Fwu-Ranq, 2009. "Stochastic Optimization in Continuous Time," Cambridge Books, Cambridge University Press, number 9780521541947, October.
    4. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    5. Ulrich Doraszelski & Kenneth L. Judd, 2012. "Avoiding the curse of dimensionality in dynamic stochastic games," Quantitative Economics, Econometric Society, vol. 3(1), pages 53-93, March.
    6. Juan F. Rubio-Ramirez & Jesus Fernández-Villaverde, 2005. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 891-910.
    7. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    8. Wälde, Klaus, 2011. "Production technologies in stochastic continuous time models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 616-622, April.
    9. Olivier Blanchard, 2009. "The State of Macro," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 209-228, May.
    10. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    11. Stephanie Becker & Lars Grüne & Willi Semmler, 2007. "Comparing accuracy of second-order approximation and dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 65-91, August.
    12. Turnovsky, Stephen J. & Smith, William T., 2006. "Equilibrium consumption and precautionary savings in a stochastically growing economy," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 243-278, February.
    13. Lars Ljungqvist & Thomas J. Sargent, 2004. "Recursive Macroeconomic Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026212274x, November.
    14. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    15. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    16. Benigno, Pierpaolo & Woodford, Michael, 2012. "Linear-quadratic approximation of optimal policy problems," Journal of Economic Theory, Elsevier, vol. 147(1), pages 1-42.
    17. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(01), pages 45-75, January.
    18. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    19. Kompas, Tom & Chu, Long, 2010. "A Comparison of Parametric Approximation Techniques to Continuous-Time Stochastic Dynamic Programming Problems," Research Reports 95044, Australian National University, Environmental Economics Research Hub.
    20. Yihong Xia, 2001. "Learning about Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," Journal of Finance, American Finance Association, vol. 56(1), pages 205-246, February.
    21. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," Review of Economic Studies, Oxford University Press, vol. 61(1), pages 3-17.
    22. Eric T. Swanson, 2012. "Risk Aversion and the Labor Margin in Dynamic Equilibrium Models," American Economic Review, American Economic Association, vol. 102(4), pages 1663-1691, June.
    23. Magill, Michael J. P., 1977. "A local analysis of N-sector capital accumulation under uncertainty," Journal of Economic Theory, Elsevier, vol. 15(1), pages 211-219, June.
    24. M. J. Brennan, 1998. "The Role of Learning in Dynamic Portfolio Decisions," Review of Finance, European Finance Association, vol. 1(3), pages 295-306.
    25. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. A comparison of numerical methods for the solution of continuous-time DSGE models
      by Christian Zimmermann in NEP-DGE blog on 2013-12-03 09:38:34

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grüne, Lars & Semmler, Willi & Stieler, Marleen, 2015. "Using nonlinear model predictive control for dynamic decision problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 112-133.

    More about this item

    Keywords

    Continuous-Time DSGE Models; Linear-Quadratic Approximation; Perturbation Method; Projection Method;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-39. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.