IDEAS home Printed from https://ideas.repec.org/p/aah/create/2022-12.html
   My bibliography  Save this paper

Estimation of continuous-time linear DSGE models from discrete-time measurements

Author

Listed:
  • Bent Jesper Christensen

    (Aarhus University, Dale T. Mortensen Center, Danish Finance Institute, CREATES)

  • Luca Neri

    (University of Bologna, Dale T. Mortensen Center, Ca’ Foscari University of Venice, CREATES)

  • Juan Carlos Parra-Alvarez

    (Aarhus University, Dale T. Mortensen Center, Danish Finance Institute and CREATES)

Abstract

We provide a general state space framework for estimation of the parameters of continuous-time linear DSGE models from data that are only available at discrete points in time. Our approach relies on the exact discrete-time representation of the equilibrium dynamics, which allows avoiding discretization errors. Using the Kalman filter, we construct the exact likelihood for data sampled either as stocks or flows, and estimate frequency-invariant parameters by maximum likelihood. We address the aliasing problem arising in multivariate settings and provide conditions for precluding it, which is required for local identification of the parameters in the continuous-time economic model. We recover the unobserved structural shocks at measurement times from the reduced-form residuals in the state space representation by exploiting the underlying causal links imposed by the economic theory and the information content of the discrete-time observations. We illustrate our approach using an off-the-shelf real business cycle model. We conduct extensive Monte Carlo experiments to study the finite sample properties of the estimator based on the exact discrete-time representation, and show they are superior to those based on a naive Euler-Maruyama discretization of the economic model. Finally, we estimate the model using postwar U.S. macroeconomic data, and offer examples of applications of our approach, including historical shock decomposition at different frequencies, and estimation based on mixed-frequency data. JEL classification: C13, C32, C68, E13, E32, J22 Key words: DSGE models, continuous time, exact discrete-time representation, stock and flow variables, Kalman filter, maximum likelihood, aliasing, structural shocks

Suggested Citation

  • Bent Jesper Christensen & Luca Neri & Juan Carlos Parra-Alvarez, 2022. "Estimation of continuous-time linear DSGE models from discrete-time measurements," CREATES Research Papers 2022-12, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2022-12
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/22/rp22_12.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(5), pages 615-645, October.
    2. Tang, Cheng Yong & Chen, Song Xi, 2009. "Parameter estimation and bias correction for diffusion processes," Journal of Econometrics, Elsevier, vol. 149(1), pages 65-81, April.
    3. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    4. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    5. McCrorie, J. Roderick, 2009. "Estimating Continuous-Time Models On The Basis Of Discrete Data Via An Exact Discrete Analog," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1120-1137, August.
    6. Achdou, Yves & Han, Jiequn & Lasry, Jean Michel & Lions, Pierre Louis & Moll, Ben, 2022. "Income and wealth distribution in macroeconomics: a continuous-time approach," LSE Research Online Documents on Economics 107422, London School of Economics and Political Science, LSE Library.
    7. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 10(Win), pages 2-16.
    8. Zhongjun Qu & Denis Tkachenko, 2017. "Global Identification in DSGE Models Allowing for Indeterminacy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(3), pages 1306-1345.
    9. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    10. Parra-Alvarez, Juan Carlos, 2018. "A Comparison Of Numerical Methods For The Solution Of Continuous-Time Dsge Models," Macroeconomic Dynamics, Cambridge University Press, vol. 22(6), pages 1555-1583, September.
    11. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    12. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    13. SeHyoun Ahn & Greg Kaplan & Benjamin Moll & Thomas Winberry & Christian Wolf, 2018. "When Inequality Matters for Macro and Macro Matters for Inequality," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 1-75.
    14. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    15. Greg Kaplan & Benjamin Moll & Giovanni L. Violante, 2018. "Monetary Policy According to HANK," American Economic Review, American Economic Association, vol. 108(3), pages 697-743, March.
    16. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    17. Zhongjun Qu & Denis Tkachenko, 2012. "Identification and frequency domain quasi‐maximum likelihood estimation of linearized dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 3(1), pages 95-132, March.
    18. Yves Achdou & Jiequn Han & Jean-Michel Lasry & Pierre-Louis Lionse & Benjamin Moll, 2022. "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 45-86.
    19. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    20. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    21. Nowman, K B, 1997. "Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 52(4), pages 1695-1706, September.
    22. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    23. Peter A. Zadrozny, 1990. "Forecasting U.S. GNP at monthly intervals with an estimated bivariate time series model," Economic Review, Federal Reserve Bank of Atlanta, issue Nov, pages 2-15.
    24. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212, Elsevier.
    25. Ambler, Steve & Paquet, Alain, 1994. "Stochastic Depreciation and the Business Cycle," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(1), pages 101-116, February.
    26. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    27. Andrzej Kocięcki & Marcin Kolasa, 2018. "Global identification of linearized DSGE models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1243-1263, November.
    28. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    29. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    30. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    31. Max Ole Liemen & Olaf Posch, 2022. "FTPL and the Maturity Structure of Government Debt in the New Keynesian Model," CESifo Working Paper Series 9840, CESifo.
    32. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    33. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-387, March.
    34. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    35. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    36. Christensen, Bent Jesper & Posch, Olaf & van der Wel, Michel, 2016. "Estimating dynamic equilibrium models using mixed frequency macro and financial data," Journal of Econometrics, Elsevier, vol. 194(1), pages 116-137.
    37. Blevins, Jason R., 2017. "Identifying Restrictions For Finite Parameter Continuous Time Models With Discrete Time Data," Econometric Theory, Cambridge University Press, vol. 33(3), pages 739-754, June.
    38. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    39. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    40. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, June.
    41. Phillips, P. C. B., 1973. "The problem of identification in finite parameter continuous time models," Journal of Econometrics, Elsevier, vol. 1(4), pages 351-362, December.
    42. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2023. "Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 91(3), pages 869-901, May.
    43. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    44. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    45. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    46. Hansen, Gary D., 1997. "Technical progress and aggregate fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1005-1023, June.
    47. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    48. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    49. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    50. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    51. Parra-Alvarez, Juan Carlos & Polattimur, Hamza & Posch, Olaf, 2021. "Risk matters: Breaking certainty equivalence in linear approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    52. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-152, January.
    53. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    3. Juan Carlos Parra‐Alvarez & Olaf Posch & Mu‐Chun Wang, 2023. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 304-330, April.
    4. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, April.
    5. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    6. Christensen, Bent Jesper & Posch, Olaf & van der Wel, Michel, 2016. "Estimating dynamic equilibrium models using mixed frequency macro and financial data," Journal of Econometrics, Elsevier, vol. 194(1), pages 116-137.
    7. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    8. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    9. Zadrozny, Peter A., 2022. "Linear identification of linear rational-expectations models by exogenous variables reconciles Lucas and Sims," CFS Working Paper Series 682, Center for Financial Studies (CFS).
    10. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
    11. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    12. Emanuele Bacchiocchi & Toru Kitagawa, 2020. "Locally- but not globally-identified SVARs," CeMMAP working papers CWP40/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    14. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    15. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    16. David Meenagh & Patrick Minford & Michael Wickens & Yongdeng Xu, 2019. "Testing DSGE Models by Indirect Inference: a Survey of Recent Findings," Open Economies Review, Springer, vol. 30(3), pages 593-620, July.
    17. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.
    18. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
    19. Faust, Jon & Whiteman, Charles H., 1997. "General-to-specific procedures for fitting a data-admissible, theory-inspired, congruent, parsimonious, encompassing, weakly-exogenous, identified, structural model to the DGP: A translation and criti," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 121-161, December.
    20. Stephen Morris, 2014. "The Statistical Implications of Common Identifying Restrictions for DSGE Models," 2014 Meeting Papers 738, Society for Economic Dynamics.

    More about this item

    Keywords

    dsge models; continuous time; exact discrete-time representation; stock and flow variables; kalman filter; maximum likelihood; aliasing; structural shocks;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2022-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.