IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v38y2016ipbp739-761.html
   My bibliography  Save this article

The exact discretisation of CARMA models with applications in finance

Author

Listed:
  • Thornton, Michael A.
  • Chambers, Marcus J.

Abstract

The problem of estimating a continuous time model using discretely observed data is common in empirical finance. This paper uses recently developed methods of deriving the exact discrete representation for a continuous time ARMA (autoregressive moving average) system of order p, q to consider three popular models in finance. Our results for two benchmark term structure models show that higher order ARMA processes provide a significantly better fit than standard Ornstein–Uhlenbeck processes. We then explore present value models linking stock prices and dividends in the presence of cointegration. Our methods enable us to take account of the fact that the two variables are observed in fundamentally different ways by explicitly modelling the data as mixed stock–flow type, which we then compare with the (more common, but incorrect) treatment of dividends as a stock variable.

Suggested Citation

  • Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
  • Handle: RePEc:eee:empfin:v:38:y:2016:i:pb:p:739-761
    DOI: 10.1016/j.jempfin.2016.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539816300330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2016.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Harrison, J Michael & Pitbladdo, Richard & Schaefer, Stephen M, 1984. "Continuous Price Processes in Frictionless Markets Have Infinite Variation," The Journal of Business, University of Chicago Press, vol. 57(3), pages 353-365, July.
    3. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    4. Jewitt, Giles & Roderick McCrorie, J., 2005. "Computing estimates of continuous time macroeconometric models on the basis of discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 397-416, April.
    5. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    6. Campbell, John Y & Shiller, Robert J, 1987. "Cointegration and Tests of Present Value Models," Journal of Political Economy, University of Chicago Press, vol. 95(5), pages 1062-1088, October.
    7. Nowman, K B, 1997. "Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 52(4), pages 1695-1706, September.
    8. Harvey, A. C. & Stock, James H., 1988. "Continuous time autoregressive models with common stochastic trends," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 365-384.
    9. Antonio Diez de los Rios & Enrique Sentana, 2011. "Testing Uncovered Interest Parity: A Continuous‐Time Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 1215-1251, November.
    10. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212, Elsevier.
    11. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    12. Basak, Suleyman & Croitoru, Benjamin, 2000. "Equilibrium Mispricing in a Capital Market with Portfolio Constraints," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 715-748.
    13. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    14. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    15. John Y. Campbell & Albert S. Kyle, 1993. "Smart Money, Noise Trading and Stock Price Behaviour," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(1), pages 1-34.
    16. Bergstrom,Albert Rex & Nowman,Khalid Ben, 2012. "A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends," Cambridge Books, Cambridge University Press, number 9781107411234, October.
    17. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    18. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    19. Jun Liu, 2004. "Losing Money on Arbitrage: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 611-641.
    20. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    21. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    22. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    23. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    24. Huang, Chi-fu, 1987. "An Intertemporal General Equilibrium Asset Pricing Model: The Case of Diffusion Information," Econometrica, Econometric Society, vol. 55(1), pages 117-142, January.
    25. K. Ben Nowman, 1998. "Continuous-time short term interest rate models," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 401-407.
    26. Chambers, Marcus J. & Thornton, Michael A., 2012. "Discrete Time Representation Of Continuous Time Arma Processes," Econometric Theory, Cambridge University Press, vol. 28(1), pages 219-238, February.
    27. Ralph S. J. Koijen & Juan Carlos Rodríguez & Alessandro Sbuelz, 2009. "Momentum and Mean Reversion in Strategic Asset Allocation," Management Science, INFORMS, vol. 55(7), pages 1199-1213, July.
    28. Jarrow, Robert & Protter, Philip, 2005. "Large traders, hidden arbitrage, and complete markets," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2803-2820, November.
    29. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    30. Antonios Sangvinatsos & Jessica A. Wachter, 2005. "Does the Failure of the Expectations Hypothesis Matter for Long‐Term Investors?," Journal of Finance, American Finance Association, vol. 60(1), pages 179-230, February.
    31. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    32. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    33. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    2. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    3. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.
    4. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
    5. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    8. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310, Edward Elgar Publishing.
    9. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    10. Peter Aling & Shakill Hassan, 2012. "No-Arbitrage One-Factor Models Of The South African Term Structure Of Interest Rates," South African Journal of Economics, Economic Society of South Africa, vol. 80(3), pages 301-318, September.
    11. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    14. repec:wyi:journl:002108 is not listed on IDEAS
    15. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    16. repec:dau:papers:123456789/5374 is not listed on IDEAS
    17. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.
    18. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    19. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    20. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Differential," Economics Working Papers 09-02, Queen's Management School, Queen's University Belfast.
    21. Burak Saltoglu, 2003. "Comparing forecasting ability of parametric and non-parametric methods: an application with Canadian monthly interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 169-176.
    22. Seungmoon Choi, 2015. "Maximum Likelihood Estimation of Continuous-Time Diffusion Models for Korean Short-Term Interest Rates," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 21(4), pages 28-58, December.

    More about this item

    Keywords

    Continuous time ARMA process; Discrete time representation; Present value; Term structure;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:38:y:2016:i:pb:p:739-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.