IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v79y2017icp48-65.html
   My bibliography  Save this article

Continuous time ARMA processes: Discrete time representation and likelihood evaluation

Author

Listed:
  • Thornton, Michael A.
  • Chambers, Marcus J.

Abstract

This paper explores the representation and estimation of mixed continuous time ARMA (autoregressive moving average) systems of orders p, q. Taking the general case of mixed stock and flow variables, we discuss new state space and exact discrete time representations and demonstrate that the discrete time ARMA representations widely used in empirical work, based on differencing stock variables, are members of a class of observationally equivalent discrete time ARMA(p+1, p) representations, which includes a more natural ARMA(p, p) representation. We compare and contrast two approaches to likelihood evaluation and computation, namely one based on an exact discrete time representation and another utilising a state space representation and the Kalman–Bucy filter. We demonstrate the value of our approach in two applications: a univariate study of the yield curve at different frequencies; and, a multivariate study of the relationship between US GDP and oil prices, taking account of the mixed frequencies with which these data are available.

Suggested Citation

  • Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
  • Handle: RePEc:eee:dyncon:v:79:y:2017:i:c:p:48-65
    DOI: 10.1016/j.jedc.2017.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188917300647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2017.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 2009. "Discrete Time Representations Of Cointegrated Continuous Time Models With Mixed Sample Data," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1030-1049, August.
    2. Harvey, A. C. & Stock, James H., 1989. "Estimating integrated higher-order continuous time autoregressions with an application to money-income causality," Journal of Econometrics, Elsevier, vol. 42(3), pages 319-336, November.
    3. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
    4. Harvey, A. C. & Stock, James H., 1988. "Continuous time autoregressive models with common stochastic trends," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 365-384.
    5. Bergstrom, A. R., 1986. "The Estimation of Open Higher-Order Continuous Time Dynamic Models with Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 2(3), pages 350-373, December.
    6. Bergstrom, A.R., 1997. "Gaussian Estimation of Mixed-Order Continuous-Time Dynamic Models with Unobservable Stochastic Trends from Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 13(4), pages 467-505, February.
    7. Marcus J. Chambers, 2011. "Cointegration and sampling frequency," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 156-185, July.
    8. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    9. Chambers, Marcus J. & Thornton, Michael A., 2012. "Discrete Time Representation Of Continuous Time Arma Processes," Econometric Theory, Cambridge University Press, vol. 28(1), pages 219-238, February.
    10. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
    11. Bergstrom,Albert Rex & Nowman,Khalid Ben, 2012. "A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends," Cambridge Books, Cambridge University Press, number 9781107411234.
    12. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    13. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    14. Bergstrom, A. R., 1985. "The Estimation of Parameters in Nonstationary Higher Order Continuous-Time Dynamic Models," Econometric Theory, Cambridge University Press, vol. 1(3), pages 369-385, December.
    15. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    16. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    17. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    18. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    19. Zadrozny, Peter A., 1998. "An eigenvalue method of undetermined coefficients for solving linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1353-1373, August.
    20. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chang & Lin, Dongtao & Liu, Jiawei & Li, Yanran, 2019. "Quantifying the effects of non-tariff measures on African agri-food exporters," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 58(4), April.
    2. Antoine GODIN & Sakir-Devrim YILMAZ, 2020. "Modelling Small Open Developing Economies in a Financialized World: A Stock-Flow Consistent Prototype Growth Model," Working Paper 5eb7e0e8-560f-4ce6-91a5-5, Agence française de développement.
    3. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    4. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    5. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    6. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    7. Ralf Korn & Bilgi Yilmaz, 2022. "House Prices as a Result of Trading Activities: A Patient Trader Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 281-303, June.
    8. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    9. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    10. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310, Edward Elgar Publishing.
    3. Milena Hoyos, 2020. "Mixed First‐ and Second‐Order Cointegrated Continuous Time Models with Mixed Stock and Flow Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 249-267, March.
    4. Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
    5. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
    6. Roderick McCrorie, J., 2001. "Interpolating exogenous variables in continuous time dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1399-1427, September.
    7. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    8. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    9. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    10. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    11. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    12. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
    13. Theodore Simos, 2008. "The exact discrete model of a system of linear stochastic differential equations driven by fractional noise," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1019-1031, November.
    14. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
    15. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    16. D. Stephen G. Pollock, 2020. "Linear Stochastic Models in Discrete and Continuous Time," Econometrics, MDPI, vol. 8(3), pages 1-22, September.
    17. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.
    18. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    19. Wymer Clifford R., 2012. "Continuous-Tme Econometrics of Structural Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-28, April.
    20. Chambers, MJ, 2016. "The Effects of Sampling Frequency on Detrending Methods for Unit Root Tests," Economics Discussion Papers 16062, University of Essex, Department of Economics.

    More about this item

    Keywords

    Continuous time; ARMA process; State space; Discrete time representation; Mixed frequency;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:79:y:2017:i:c:p:48-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.