IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v29y2008i6p1019-1031.html
   My bibliography  Save this article

The exact discrete model of a system of linear stochastic differential equations driven by fractional noise

Author

Listed:
  • Theodore Simos

Abstract

. This paper derives the exact discrete model (EDM) of a kth‐order system of stochastic differential equations driven by a vector fractional noise under fixed initial conditions. The EDM can be used for the Gaussian estimation and forecasting with long‐memory discrete‐time equispaced data. Detailed formulae which are necessary for the construction and numerical evaluation of the Gaussian likelihood under two observation schemes are established. State variables can be observed either at equispaced points in time or as integrals over the observational interval.

Suggested Citation

  • Theodore Simos, 2008. "The exact discrete model of a system of linear stochastic differential equations driven by fractional noise," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1019-1031, November.
  • Handle: RePEc:bla:jtsera:v:29:y:2008:i:6:p:1019-1031
    DOI: 10.1111/j.1467-9892.2008.00593.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2008.00593.x
    Download Restriction: no

    References listed on IDEAS

    as
    1. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    2. Henghsiu Tsai & K. S. Chan, 2005. "Maximum likelihood estimation of linear continuous time long memory processes with discrete time data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 703-716, November.
    3. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    4. Bergstrom, A. R., 1986. "The Estimation of Open Higher-Order Continuous Time Dynamic Models with Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 2(3), pages 350-373, December.
    5. Bergstrom, A.R., 1997. "Gaussian Estimation of Mixed-Order Continuous-Time Dynamic Models with Unobservable Stochastic Trends from Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 13(4), pages 467-505, February.
    6. Chambers, Marcus J., 1996. "The Estimation of Continuous Parameter Long-Memory Time Series Models," Econometric Theory, Cambridge University Press, vol. 12(2), pages 374-390, June.
    7. Bergstrom, A. R., 1985. "The Estimation of Parameters in Nonstationary Higher Order Continuous-Time Dynamic Models," Econometric Theory, Cambridge University Press, vol. 1(3), pages 369-385, December.
    8. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:6:p:1019-1031. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.