IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v28y2012i01p219-238_00.html
   My bibliography  Save this article

Discrete Time Representation Of Continuous Time Arma Processes

Author

Listed:
  • Chambers, Marcus J.
  • Thornton, Michael A.

Abstract

This paper derives exact discrete time representations for data generated by a continuous time autoregressive moving average (ARMA) system with mixed stock and flow data. The representations for systems comprised entirely of stocks or of flows are also given. In each case the discrete time representations are shown to be of ARMA form, the orders depending on those of the continuous time system. Three examples and applications are also provided, two of which concern the stationary ARMA(2, 1) model with stock variables (with applications to sunspot data and a short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model with a flow variable (with an application to U.S. nondurable consumers’ expenditure). In all three examples the presence of an MA(1) component in the continuous time system has a dramatic impact on eradicating unaccounted-for serial correlation that is present in the discrete time version of the ARMA(2, 0) specification, even though the form of the discrete time model is ARMA(2, 1) for both models.

Suggested Citation

  • Chambers, Marcus J. & Thornton, Michael A., 2012. "Discrete Time Representation Of Continuous Time Arma Processes," Econometric Theory, Cambridge University Press, vol. 28(01), pages 219-238, February.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:01:p:219-238_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466611000181
    File Function: link to article abstract page
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:dyncon:v:79:y:2017:i:c:p:48-65 is not listed on IDEAS
    2. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    3. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    4. Neil Kellard & Denise Osborn & Jerry Coakley & Marcus J. Chambers, 2015. "Testing for a Unit Root in a Near-Integrated Model with Skip-Sampled Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 630-649, September.
    5. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310 Edward Elgar Publishing.
    6. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    7. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    8. Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
    9. Chambers, MJ, 2016. "The Effects of Sampling Frequency on Detrending Methods for Unit Root Tests," Economics Discussion Papers 16062, University of Essex, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:01:p:219-238_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.