IDEAS home Printed from
   My bibliography  Save this article

Cointegration and sampling frequency


  • Marcus J. Chambers


This paper analyses the effects of sampling frequency on the properties of spectral regression estimators of cointegrating parameters. Large sample asymptotic properties are derived under three scenarios concerning the span of data and sampling frequency, each scenario depending on whether span or frequency (or both) tends to infinity. The limiting distributions are shown to be different in each case. Furthermore, the asymptotic efficiency of the estimators obtained with a fixed sampling frequency is compared with that obtained with a continuous record of data, and it is shown that the only inefficiencies arise with respect to stock variables. Some simulation results and an empirical illustration are also provided.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Marcus J. Chambers, 2011. "Cointegration and sampling frequency," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 156-185, July.
  • Handle: RePEc:ect:emjrnl:v:14:y:2011:i:2:p:156-185

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, June.
    2. Otero, Jesus & Smith, Jeremy, 2000. "Testing for cointegration: power versus frequency of observation -- further Monte Carlo results," Economics Letters, Elsevier, vol. 67(1), pages 5-9, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Herzer, Dierk & Nunnenkamp, Peter, 2015. "Income inequality and health: Evidence from developed and developing countries," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 9, pages 1-56.
    2. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    3. Herzer, Dierk, 2013. "Cross-Country Heterogeneity and the Trade-Income Relationship," World Development, Elsevier, vol. 44(C), pages 194-211.
    4. Dierk Herzer & Holger Strulik, 2017. "Religiosity and income: a panel cointegration and causality analysis," Applied Economics, Taylor & Francis Journals, vol. 49(30), pages 2922-2938, June.
    5. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2014. "Green Growth in Mexico, Brazil and Chile: Policy strategies and future prospects," Ibero America Institute for Econ. Research (IAI) Discussion Papers 229, Ibero-America Institute for Economic Research.
    6. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    7. Partha Ray & Vinodh Madhavan, 2014. "Price and Volatility Linkages between Indian Stocks and their European GDRs," Proceedings of International Academic Conferences 0300812, International Institute of Social and Economic Sciences.
    8. repec:eee:dyncon:v:79:y:2017:i:c:p:48-65 is not listed on IDEAS
    9. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    10. Dierk Herzer & Holger Strulik & Sebastian Vollmer, 2012. "The long-run determinants of fertility: one century of demographic change 1900–1999," Journal of Economic Growth, Springer, vol. 17(4), pages 357-385, December.
    11. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    12. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    13. Chambers, MJ, 2016. "The Effects of Sampling Frequency on Detrending Methods for Unit Root Tests," Economics Discussion Papers 16062, University of Essex, Department of Economics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:14:y:2011:i:2:p:156-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.