IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1597.html
   My bibliography  Save this paper

Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance

Author

Abstract

This paper overviews maximum likelihood and Gaussian methods of estimating continuous time models used in finance. Since the exact likelihood can be constructed only in special cases, much attention has been devoted to the development of methods designed to approximate the likelihood. These approaches range from crude Euler-type approximations and higher order stochastic Taylor series expansions to more complex polynomial-based expansions and infill approximations to the likelihood based on a continuous time data record. The methods are discussed, their properties are outlined and their relative finite sample performance compared in a simulation experiment with the nonlinear CIR diffusion model, which is popular in empirical finance. Bias correction methods are also considered and particular attention is given to jackknife and indirect inference estimators. The latter retains the good asymptotic properties of ML estimation while removing finite sample bias. This method demonstrates superior performance in finite samples.

Suggested Citation

  • Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1597
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d15/d1597.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
    2. Ronchetti, Elvezio, 1990. "Small sample asymptotics: a review with applications to robust statistics," Computational Statistics & Data Analysis, Elsevier, vol. 10(3), pages 207-223, December.
    3. Tripathi, Gautam, 2000. "Econometric Methods," Econometric Theory, Cambridge University Press, vol. 16(01), pages 139-142, February.
    4. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212 Elsevier.
    5. Andersen, Torben G., 2000. "Simulation-Based Econometric Methods," Econometric Theory, Cambridge University Press, vol. 16(01), pages 131-138, February.
    6. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, August.
    7. Monfort, Alain, 1996. "A Reappraisal of Misspecified Econometric Models," Econometric Theory, Cambridge University Press, vol. 12(04), pages 597-619, October.
    8. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    10. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    13. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    14. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-387, March.
    15. Bergstrom,Albert Rex & Nowman,Khalid Ben, 2012. "A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends," Cambridge Books, Cambridge University Press, number 9781107411234, April.
    16. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    17. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    18. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    19. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    20. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    21. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    24. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    25. Phillips, P. C. B., 1973. "The problem of identification in finite parameter continuous time models," Journal of Econometrics, Elsevier, vol. 1(4), pages 351-362, December.
    26. Ola Elerian, 1998. "A note on the existence of a closed form conditional transition density for the Milstein scheme," Economics Series Working Papers 1998-W18, University of Oxford, Department of Economics.
    27. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    28. Peter C. B. Phillips & Jun Yu, 2005. "Comments on “A Selective Overview of Nonparametric Methods in Financial Econometrics” by Jianqing Fan," Working Papers 08-2005, Singapore Management University, School of Economics.
    29. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters,in: Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34 World Scientific Publishing Co. Pte. Ltd..
    30. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    31. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.

    More about this item

    Keywords

    Maximum likelihood; Transition density; Discrete sampling; Continuous record; Realized volatility; Bias reduction; Jackknife; Indirect inference;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1597. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.