IDEAS home Printed from
   My bibliography  Save this article

A two-stage realized volatility approach to estimation of diffusion processes with discrete data


  • Phillips, Peter C.B.
  • Yu, Jun


This paper motivates and introduces a two-stage method of estimating diffusion processes based on discretely sampled observations. In the first stage we make use of the feasible central limit theory for realized volatility, as developed in [Jacod, J., 1994. Limit of random measures associated with the increments of a Brownian semiartingal. Working paper, Laboratoire de Probabilities, Universite Pierre et Marie Curie, Paris] and [Barndorff-Nielsen, O., Shephard, N., 2002. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society. Series B, 64, 253-280], to provide a regression model for estimating the parameters in the diffusion function. In the second stage, the in-fill likelihood function is derived by means of the Girsanov theorem and then used to estimate the parameters in the drift function. Consistency and asymptotic distribution theory for these estimates are established in various contexts. The finite sample performance of the proposed method is compared with that of the approximate maximum likelihood method of [Aït-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled diffusion: A closed-form approximation approach. Econometrica. 70, 223-262].

Suggested Citation

  • Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
  • Handle: RePEc:eee:econom:v:150:y:2009:i:2:p:139-150

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    3. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
    4. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(04), pages 677-719, August.
    5. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    6. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    7. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    8. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, August.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    10. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    11. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    12. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    13. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    14. Phillips, P C B, 1972. "The Structural Estimation of a Stochastic Differential Equation System," Econometrica, Econometric Society, vol. 40(6), pages 1021-1041, November.
    15. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    16. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    17. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    18. Hutton, James E. & Nelson, Paul I., 1986. "Quasi-likelihood estimation for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 22(2), pages 245-257, July.
    19. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    20. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Piotr Pluciennik, 2010. "Forecasting Financial Processes by Using Diffusion Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 10, pages 51-60.
    2. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    3. Huang Xiao, 2013. "Quasi-maximum likelihood estimation of multivariate diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 179-197, April.
    4. Yubo Tao & Peter C.B. Phillips & Jun Yu, 2017. "Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour," Cowles Foundation Discussion Papers 3014, Cowles Foundation for Research in Economics, Yale University.
    5. Niu Wei-Fang, 2013. "Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 421-438, September.
    6. Shin Kanaya, 2015. "Uniform Convergence Rates of Kernel-Based Nonparametric Estimators for Continuous Time Diffusion Processes: A Damping Function Approach," CREATES Research Papers 2015-50, Department of Economics and Business Economics, Aarhus University.
    7. Gagnon, Marie-Hélène & Gimet, Céline, 2013. "The impacts of standard monetary and budgetary policies on liquidity and financial markets: International evidence from the credit freeze crisis," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4599-4614.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:150:y:2009:i:2:p:139-150. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.