IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i04p874-914_00.html

Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach

Author

Listed:
  • Kanaya, Shin

Abstract

In this paper, we derive uniform convergence rates of nonparametric estimators for continuous time diffusion processes. In particular, we consider kernel-based estimators of the Nadaraya–Watson type, introducing a new technical device called a damping function. This device allows us to derive sharp uniform rates over an infinite interval with minimal requirements on the processes: The existence of the moment of any order is not required and the boundedness of relevant functions can be significantly relaxed. Restrictions on kernel functions are also minimal: We allow for kernels with discontinuity, unbounded support, and slowly decaying tails. Our proofs proceed by using the covering-number technique from empirical process theory and exploiting the mixing and martingale properties of the processes. We also present new results on the path-continuity property of Brownian motions and diffusion processes over an infinite time horizon. These path-continuity results, which should also be of some independent interest, are used to control discretization biases of the nonparametric estimators. The obtained convergence results are useful for non/semiparametric estimation and testing problems of diffusion processes.

Suggested Citation

  • Kanaya, Shin, 2017. "Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach," Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:04:p:874-914_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466616000219/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    2. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    3. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
    4. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    5. Kanaya, S. & Bhattacharya, D., 2017. "Uniform Convergence of Smoothed Distribution Functions with an Application to Delta Method for the Lorenz Curve," Cambridge Working Papers in Economics 1760, Faculty of Economics, University of Cambridge.
    6. Ruijun Bu & Jihyun Kim & Bin Wang, 2020. "Uniform and Lp Convergences of Nonparametric Estimation for Diffusion Models," Working Papers 202021, University of Liverpool, Department of Economics.
    7. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    8. Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
    9. Debopam Bhattacharya & Shin Kanaya & Margaret Stevens, 2017. "Are University Admissions Academically Fair?," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 449-464, July.
    10. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:04:p:874-914_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.