IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimation of Stochastic Volatility Models by Nonparametric Filtering

  • Shin Kanaya


    (Department of Economics, Oxford-Man Institute and Nuffield College)

  • Dennis Kristensen


    (Department of Economics, Columbia University, and CREATES)

A two-step estimation method of stochastic volatility models is proposed: In the first step, we estimate the (unobserved) instantaneous volatility process using the estimator of Kristensen (2010, Econometric Theory 26). In the second step, standard estimation methods for fully observed diffusion processes are employed, but with the filtered volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and we give theoretical results for both. The resulting estimators of the drift and diffusion terms of the volatility model will carry additional biases and variances due to the first-step estimation, but under regularity conditions these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties of the proposed estimators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics and Business Economics, Aarhus University in its series CREATES Research Papers with number 2010-67.

in new window

Length: 53
Date of creation: 10 Jan 2010
Date of revision:
Handle: RePEc:aah:create:2010-67
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 413-450.
  2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
  3. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
  4. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
  5. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
  6. Dennis Kristensen, 2009. "Pseudo-Maximum Likelihood Estimation in Two Classes of Semiparametric Diffusion Models," CREATES Research Papers 2009-41, Department of Economics and Business Economics, Aarhus University.
  7. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
  8. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
  9. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1174-1206, October.
  10. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
  11. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  12. Bandi, Federico M. & Nguyen, Thong H., 2003. "On the functional estimation of jump-diffusion models," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 293-328.
  13. Federico M. Bandi & Peter C.B. Phillips, 2001. "Fully Nonparametric Estimation of Scalar Diffusion Models," Cowles Foundation Discussion Papers 1332, Cowles Foundation for Research in Economics, Yale University.
  14. Peter C.B. Phillips & Jun Yu, 2003. "Jackknifing Bond Option Prices," Cowles Foundation Discussion Papers 1392, Cowles Foundation for Research in Economics, Yale University.
  15. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  16. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
  17. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(05), pages 615-645, October.
  18. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  19. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
  20. Reno, Roberto, 2006. "Nonparametric estimation of stochastic volatility models," Economics Letters, Elsevier, vol. 90(3), pages 390-395, March.
  21. Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  22. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric estimation with generated covariates," Working Paper Series in Economics 81, Karlsruhe Institute of Technology (KIT), Department of Economics and Business Engineering.
  23. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  24. Dennis Kristensen, 2007. "Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach," CREATES Research Papers 2007-02, Department of Economics and Business Economics, Aarhus University.
  25. Sandra Gonzalez-Bailon & Tommy Murphy, 2008. "When Smaller Families Look Contagious: A Spatial Look at the French Fertility Decline Using an Agent-Based Simulation Model," Economics Series Working Papers 71, University of Oxford, Department of Economics.
  26. Enno Mammen & Christoph Rothe & Melanie Schienle, 2010. "Nonparametric Regression with Nonparametrically Generated Covariates," SFB 649 Discussion Papers SFB649DP2010-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  27. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
  28. Jiti Gao & Degui Li & Dag Tjøstheim, 2011. "Uniform Consistency for Nonparametric Estimators in Null Recurrent Time Series," Monash Econometrics and Business Statistics Working Papers 13/11, Monash University, Department of Econometrics and Business Statistics.
  29. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  30. Stefan Sperlich, 2009. "A note on non-parametric estimation with predicted variables," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 382-395, 07.
  31. Irène Gijbels & Alexandre Lambert & Peihua Qiu, 2007. "Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 235-272, June.
  32. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
  33. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(03), pages 726-748, June.
  34. Drost, F.C. & Werker, B.J.M., 1996. "Closing the GARCH gap : Continuous time GARCH modeling," Other publications TiSEM c3d29817-403a-4ad1-9295-8, Tilburg University, School of Economics and Management.
  35. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2010-67. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.