IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v33y2018i6p874-897.html

Indirect inference with time series observed with error

Author

Listed:
  • Eduardo Rossi
  • Paolo Santucci de Magistris

Abstract

We propose the indirect inference estimator as a consistent method to estimate the parameters of a structural model when the observed series are contaminated by measurement error by considering the noise as a structural feature. We show that the indirect inference estimates are asymptotically biased if the error is neglected. When the condition for identification is satisfied, the structural and measurement error parameters can be consistently estimated. The issues of identification and misspecification of measurement error are discussed in detail. We illustrate the reliability of this procedure in the estimation of stochastic volatility models based on realized volatility measures contaminated by microstructure noise.

Suggested Citation

  • Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
  • Handle: RePEc:wly:japmet:v:33:y:2018:i:6:p:874-897
    DOI: 10.1002/jae.2639
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2639
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2022. "Dynamic Discrete Mixtures for High-Frequency Prices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 559-577, April.
    2. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    3. Simone Serafini & Giacomo Bormetti, 2025. "Pricing Carbon Allowance Options on Futures: Insights from High-Frequency Data," Papers 2501.17490, arXiv.org, revised May 2025.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:33:y:2018:i:6:p:874-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.