IDEAS home Printed from https://ideas.repec.org/f/pro257.html
   My authors  Follow this author

Eduardo Rossi

Personal Details

First Name:Eduardo
Middle Name:
Last Name:Rossi
Suffix:
RePEc Short-ID:pro257
https://sites.google.com/unipv.it/edurossi/home
Via San Felice 5 27100 Pavia Italy

Affiliation

Dipartimento di Scienze Economiche e Aziendali
Università degli Studi di Pavia

Pavia, Italy
http://economiaweb.unipv.it/

+39/0382/506201
+39/0382/304226
Via S. Felice, 5 - 27100 Pavia
RePEc:edi:dppavit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Andrea Bucci & Giulio Palomba & Eduardo Rossi, 2019. "Does macroeconomics help in predicting stock markets volatility comovements? A nonlinear approach," Working Papers 440, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  2. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2016. "Structural analysis with mixed frequencies: monetary policy, uncertainty and gross capital flows," Working Papers 2016-04, Joint Research Centre, European Commission (Ispra site).
  3. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "Testing for no factor structures: on the use of average-type and Hausman-type statistics," DEM Working Papers Series 092, University of Pavia, Department of Economics and Management.
  4. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
  5. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "A Two-Stage Estimator for Heterogeneous Panel Models with Common Factors," DEM Working Papers Series 066, University of Pavia, Department of Economics and Management.
  6. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Volatility jumps and their economic determinants," CREATES Research Papers 2014-27, Department of Economics and Business Economics, Aarhus University.
  7. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Indirect inference with time series observed with error," CREATES Research Papers 2014-57, Department of Economics and Business Economics, Aarhus University.
  8. Eduardo Rossi & Dean Fantazzini, 2012. "Long memory and Periodicity in Intraday Volatility," DEM Working Papers Series 015, University of Pavia, Department of Economics and Management.
  9. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2012. "Inference on Factor Structures in Heterogeneous Panels," DEM Working Papers Series 002, University of Pavia, Department of Economics and Management.
  10. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2012. "Independent Factor Autoregressive Conditional Density Model," DEM Working Papers Series 021, University of Pavia, Department of Economics and Management.
  11. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".
  12. Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
  13. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, Department of Economics and Business Economics, Aarhus University.
  14. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
  15. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Estimation methods in panel data models with observed and unobserved components: a Monte Carlo study," MPRA Paper 26196, University Library of Munich, Germany.
  16. Rossi, Eduardo & Spazzini, Filippo, 2008. "Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis," MPRA Paper 12260, University Library of Munich, Germany.
  17. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Euro corporate bonds risk factors," MPRA Paper 13440, University Library of Munich, Germany.
  18. Eduardo Rossi, 1995. "A multivariate GARCH model for exchange rates volatility," LIUC Papers in Economics 21, Cattaneo University (LIUC).

Articles

  1. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2020. "Structural analysis with mixed-frequency data: A model of US capital flows," Economic Modelling, Elsevier, vol. 89(C), pages 427-443.
  2. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2019. "A two-stage estimator for heterogeneous panel models with common factors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 63-82.
  3. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
  4. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
  5. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 29-80.
  6. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
  7. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Testing for no factor structures: On the use of Hausman-type statistics," Economics Letters, Elsevier, vol. 130(C), pages 66-68.
  8. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
  9. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(4), pages 922-961.
  10. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
  11. Carolina Castagnetti & Eduardo Rossi, 2013. "Euro Corporate Bond Risk Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 372-391, April.
  12. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
  13. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
  14. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
  15. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
  16. Rossi, E. & Spazzini, F., 2010. "Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2786-2800, November.
  17. Riccardo Lucchetti & Eduardo Rossi, 2005. "Artificial regression testing in the GARCH-in-mean model," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 306-322, December.
  18. Eduardo Rossi & Claudio Zucca, 2002. "Hedging interest rate risk with multivariate GARCH," Applied Financial Economics, Taylor & Francis Journals, vol. 12(4), pages 241-251.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Andrea Bucci & Giulio Palomba & Eduardo Rossi, 2019. "Does macroeconomics help in predicting stock markets volatility comovements? A nonlinear approach," Working Papers 440, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    Cited by:

    1. Bucci, Andrea, 2019. "Cholesky-ANN models for predicting multivariate realized volatility," MPRA Paper 95137, University Library of Munich, Germany.

  2. Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2016. "Structural analysis with mixed frequencies: monetary policy, uncertainty and gross capital flows," Working Papers 2016-04, Joint Research Centre, European Commission (Ispra site).

    Cited by:

    1. Chudik, Alexander & Georgiadis, Georgios, 2019. "Estimation of impulse response functions when shocks are observed at a higher frequency than outcome variables," Working Paper Series 2307, European Central Bank.

  3. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "Testing for no factor structures: on the use of average-type and Hausman-type statistics," DEM Working Papers Series 092, University of Pavia, Department of Economics and Management.

    Cited by:

    1. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.

  4. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    2. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    3. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
    4. Giampiero M. Gallo & Edoardo Otranto, 2016. "Combining Markov Switching and Smooth Transition in Modeling Volatility: A Fuzzy Regime MEM," Econometrics Working Papers Archive 2016_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    5. Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2016. "Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural Approach," CREATES Research Papers 2016-20, Department of Economics and Business Economics, Aarhus University.
    6. Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, Open Access Journal, vol. 11(12), pages 1-19, November.

  5. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Volatility jumps and their economic determinants," CREATES Research Papers 2014-27, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Matteo Bonato & Rangan Gupta & Chi Keung Marco Lau & Shixuan Wang, 2019. "Moments-Based Spillovers across Gold and Oil Markets," Working Papers 201966, University of Pretoria, Department of Economics.
    2. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
    3. Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
    4. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2020. "Oil shocks and volatility jumps," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 247-272, January.
    5. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2018. "Forecasting (Good and Bad) Realized Exchange-Rate Volatility: Is there a Role for Realized Skewness and Kurtosis?," Working Papers 201879, University of Pretoria, Department of Economics.
    6. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2018. "Volatility Jumps: The Role of Geopolitical Risks," Working Papers 201805, University of Pretoria, Department of Economics.
    7. Jan Hanousek & Evžen Kočenda & Jan Novotný, 2016. "Shluková analýza skoků na kapitálových trzích [Cluster Analysis of Jumps on Capital Markets]," Politická ekonomie, University of Economics, Prague, vol. 2016(2), pages 127-144.
    8. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
    9. Hardik A. Marfatia & Rangan Gupta & Stephen M. Miller, 2020. "125 Years of Time-Varying Effects of Fiscal Policy on Financial Markets," Working papers 2020-12, University of Connecticut, Department of Economics.
    10. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Tahir Suleman, 2018. "Jumps Beyond the Realms of Cricket: India’s Performance in One Day Internationals and Stock Market Movements," Working Papers 201871, University of Pretoria, Department of Economics.
    11. Giampiero M. Gallo & Edoardo Otranto, 2016. "Combining Markov Switching and Smooth Transition in Modeling Volatility: A Fuzzy Regime MEM," Econometrics Working Papers Archive 2016_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    12. Rangan Gupta & Chi Keung Marco Lau & Seong-Min Yoon, 2017. "OPEC News Announcement Effect on Volatility in the Crude Oil Market: A Reconsideration," Working Papers 201754, University of Pretoria, Department of Economics.
    13. Hardik A. Marfatia & Rangan Gupta & Esin Cakan, 2019. "Dynamic Impact of the U.S. Monetary Policy on Oil Market Returns and Volatility," Working Papers 201916, University of Pretoria, Department of Economics.
    14. Veiga, Helena & Ruiz, Esther & González-Rivera, Gloria & Gonçalves Mazzeu, Joao Henrique, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
    16. Kam F. Chan & Philip Gray, 2018. "Volatility jumps and macroeconomic news announcements," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(8), pages 881-897, August.
    17. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Clement Kyei, 2019. "Monetary Policy Uncertainty and Volatility Jumps in Advanced Equity Markets," Working Papers 201939, University of Pretoria, Department of Economics.

  6. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Indirect inference with time series observed with error," CREATES Research Papers 2014-57, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.

  7. Eduardo Rossi & Dean Fantazzini, 2012. "Long memory and Periodicity in Intraday Volatility," DEM Working Papers Series 015, University of Pavia, Department of Economics and Management.

    Cited by:

    1. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    3. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
    4. Fantazziini, Dean, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US using Online Search Data," MPRA Paper 59696, University Library of Munich, Germany.
    5. Voges, Michelle & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks," Hannover Economic Papers (HEP) dp-599, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    7. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jul 2017.
    9. Herrmann, Klaus & Teis, Stefan & Yu, Weijun, 2014. "Components of intraday volatility and their prediction at different sampling frequencies with application to DAX and BUND futures," FAU Discussion Papers in Economics 15/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Cattivelli, Luca & Pirino, Davide, 2019. "A SHARP model of bid–ask spread forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1211-1225.
    11. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    12. Barbara Bedowska-Sojka, 2011. "The Impact of Macro News on Volatility of Stock Exchanges," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 99-110.
    13. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    14. Leschinski, Christian & Sibbertsen, Philipp, 2019. "Model order selection in periodic long memory models," Econometrics and Statistics, Elsevier, vol. 9(C), pages 78-94.
    15. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    16. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    17. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.

  8. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2012. "Inference on Factor Structures in Heterogeneous Panels," DEM Working Papers Series 002, University of Pavia, Department of Economics and Management.

    Cited by:

    1. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "A Two-Stage Estimator for Heterogeneous Panel Models with Common Factors," DEM Working Papers Series 066, University of Pavia, Department of Economics and Management.
    2. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
    3. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "Testing for no factor structures: on the use of average-type and Hausman-type statistics," DEM Working Papers Series 092, University of Pavia, Department of Economics and Management.
    4. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Testing for no factor structures: On the use of Hausman-type statistics," Economics Letters, Elsevier, vol. 130(C), pages 66-68.
    5. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston, revised 09 Aug 2017.
    6. Li, Kunpeng & Cui, Guowei & Lu, Lina, 2020. "Efficient estimation of heterogeneous coefficients in panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 216(2), pages 327-353.

  9. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2012. "Independent Factor Autoregressive Conditional Density Model," DEM Working Papers Series 021, University of Pavia, Department of Economics and Management.

    Cited by:

    1. Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018. "Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets," Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
    2. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    3. Syed Abul, Basher & Perry, Sadorsky, 2015. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," MPRA Paper 68231, University Library of Munich, Germany.
    4. Umar, Zaghum & Hussain Shahzad, Syed Jawad & Kenourgios, Dimitris, 2019. "Hedging U.S. metals & mining Industry's credit risk with industrial and precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    5. Kris Boudt & Dries Cornilly & Tim Verdonck, 2019. "Nearest Comoment Estimation With Unobserved Factors," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 19/970, Ghent University, Faculty of Economics and Business Administration.
    6. Boudt, Kris & Lu, Wanbo & Peeters, Benedict, 2015. "Higher order comoments of multifactor models and asset allocation," Finance Research Letters, Elsevier, vol. 13(C), pages 225-233.

  10. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".

    Cited by:

    1. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    2. Jan Hanousek & Evžen Kočenda & Jan Novotný, 2016. "Shluková analýza skoků na kapitálových trzích [Cluster Analysis of Jumps on Capital Markets]," Politická ekonomie, University of Economics, Prague, vol. 2016(2), pages 127-144.
    3. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 9(3), pages 1-25, July.
    4. Jan Hanousek & Ev??en Ko??enda & Jan Novotn??, 2013. "Price Jumps on European Stock Markets," William Davidson Institute Working Papers Series wp1059, William Davidson Institute at the University of Michigan.
    5. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.

  11. Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Hafner, Christian & Preminger, Arie, 2015. "The effect of additive outliers on a fractional unit root test," IBSA Discussion Papers (ISBA - Institute of Statistics, Biostatistics and Actuarial Sciences) 2015027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
    3. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    5. La Spada Gabriele & Lillo Fabrizio, 2014. "The effect of round-off error on long memory processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 1-38, September.
    6. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.

  12. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Gilles de Truchis & Benjamin Keddad, 2014. "On the Risk Comovements between the Crude Oil Market and the U.S. Dollar Exchange Rates," AMSE Working Papers 1421, Aix-Marseille School of Economics, France, revised May 2014.
    2. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2015. "Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach," CREATES Research Papers 2015-30, Department of Economics and Business Economics, Aarhus University.
    3. Henryk Gurgul & Lukaz Lach & Tomasz Wojtowicz, 2016. "Impact of US Macroeconomic News Announcements on Intraday Causalities on Selected European Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 405-425, October.
    4. Yung-Ching Tseng & Wo-Chiang Lee, 2016. "Investor Sentiment and ETF Liquidity - Evidence from Asia Markets," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 6(1), pages 1-5.
    5. Zied Ftiti & Fredj Jawadi & Waël Louhichi, 2017. "Modelling the relationship between future energy intraday volatility and trading volume with wavelet," Applied Economics, Taylor & Francis Journals, vol. 49(20), pages 1981-1993, April.
    6. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    7. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    8. Piotr Gurgul & Robert Syrek, 2013. "Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 11(4 (Winter), pages 353-373.
    9. Xue-Zhong He & Huanhuan Zheng, 2016. "Trading Heterogeneity Under Information Uncertainty," Research Paper Series 373, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Fredj Jawadi & Waël Louhichi & Abdoulkarim Idi Cheffou & Rivo Randrianarivony, 2016. "Intraday jumps and trading volume: a nonlinear Tobit specification," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1167-1186, November.
    11. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    12. Bàrbara Llacay & Gilbert Peffer, 2018. "Using realistic trading strategies in an agent-based stock market model," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 308-350, September.
    13. Henryk Gurgul & Lukasz Lach & Tomasz Wójtowicz, 2016. "Linear and nonlinear intraday causalities in response to U.S. macroeconomic news announcements: Evidence from Central Europe," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 17(2), pages 217-240.
    14. Cai, Wenwu & Lu, Jing, 2019. "Investors’ financial attention frequency and trading activity," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    15. Maria Elena Bontempi & Caterina Lucarelli, 2012. "Pre-trade transparency and trade size," Applied Financial Economics, Taylor & Francis Journals, vol. 22(8), pages 597-609, April.
    16. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    17. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.

  13. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".

  14. Rossi, Eduardo & Spazzini, Filippo, 2008. "Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis," MPRA Paper 12260, University Library of Munich, Germany.

    Cited by:

    1. Hendrych, R. & Cipra, T., 2016. "On conditional covariance modelling: An approach using state space models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 304-317.
    2. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    3. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    4. Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
    5. Ruiz, Esther & Fresoli, Diego, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Hafner, C. & Reznikova, O., 2010. "On the estimation of dynamic conditional correlation models," IBSA Discussion Papers (ISBA - Institute of Statistics, Biostatistics and Actuarial Sciences) 2010006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

  15. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Euro corporate bonds risk factors," MPRA Paper 13440, University Library of Munich, Germany.

    Cited by:

    1. Castagnetti, Carolina, 2018. "A novel approach for testing the parity relationship between CDS and credit spread," Economics Letters, Elsevier, vol. 172(C), pages 115-117.
    2. Marcin Jaskowski & Michael McAleer, 2018. "Spurious Cross-Sectional Dependence in Credit Spread Changes," Documentos de Trabajo del ICAE 2018-21, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Gündüz, Yalin & Ottonello, Giorgio & Pelizzon, Loriana & Schneider, Michael & Subrahmanyam, Marti G., 2018. "Lighting up the dark: Liquidity in the German corporate bond market," SAFE Working Paper Series 230, Leibniz Institute for Financial Research SAFE.
    4. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "A Two-Stage Estimator for Heterogeneous Panel Models with Common Factors," DEM Working Papers Series 066, University of Pavia, Department of Economics and Management.
    5. Mehdi Mili, 2018. "Systemic risk spillovers in sovereign credit default swaps in Europe: a spatial approach," Journal of Asset Management, Palgrave Macmillan, vol. 19(2), pages 133-143, March.
    6. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2018. "A factor-based approach of bond portfolio value-at-risk: The informational roles of macroeconomic and financial stress factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 243-268.
    7. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
    8. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Estimation methods in panel data models with observed and unobserved components: a Monte Carlo study," MPRA Paper 26196, University Library of Munich, Germany.
    9. Christian Klein & Christoph Stellner, 2014. "The systematic risk of corporate bonds: default risk, term risk, and index choice," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(1), pages 29-61, February.
    10. Anthony H. Tu & Cathy Yi-Hsuan Chen, 2016. "What Derives the Bond Portfolio Value-at-Risk: Information Roles of Macroeconomic and Financial Stress Factors," SFB 649 Discussion Papers SFB649DP2016-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Ephraim Clark & Selima Baccar, 2018. "Modelling credit spreads with time volatility, skewness, and kurtosis," Annals of Operations Research, Springer, vol. 262(2), pages 431-461, March.
    12. Bada, Oualid & Kneip, Alois, 2014. "Parameter cascading for panel models with unknown number of unobserved factors: An application to the credit spread puzzle," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 95-115.

Articles

  1. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    See citations under working paper version above.
  2. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.

    Cited by:

    1. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    2. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.

  3. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 29-80.
    See citations under working paper version above.
  4. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
    See citations under working paper version above.
  5. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Testing for no factor structures: On the use of Hausman-type statistics," Economics Letters, Elsevier, vol. 130(C), pages 66-68.

    Cited by:

    1. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2019. "Testing for Correlated Factor Loadings in Cross Sectionally Dependent Panels," SERIES 02-2019, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jun 2019.

  6. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    See citations under working paper version above.
  7. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(4), pages 922-961.
    See citations under working paper version above.
  8. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    See citations under working paper version above.
  9. Carolina Castagnetti & Eduardo Rossi, 2013. "Euro Corporate Bond Risk Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 372-391, April.
    See citations under working paper version above.
  10. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.

    Cited by:

    1. Gilles de Truchis & Benjamin Keddad, 2014. "On the Risk Comovements between the Crude Oil Market and the U.S. Dollar Exchange Rates," AMSE Working Papers 1421, Aix-Marseille School of Economics, France, revised May 2014.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," Discussion Papers 12-18, University of Copenhagen. Department of Economics.
    3. Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
    4. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    5. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    6. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
    7. Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".
    8. Morten Ø. Nielsen & S Johansen, 2012. "The Role Of Initial Values In Conditional Sum-of-squares Estimation Of Nonstationary Fractional Time Series Models," Working Paper 1300, Economics Department, Queen's University.
    9. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    10. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.

  11. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    See citations under working paper version above.
  12. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.

    Cited by:

    1. Jean-François Richard, 2015. "Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables," Working Paper 5778, Department of Economics, University of Pittsburgh.
    2. Sun, Libo & Lee, Chihoon & Hoeting, Jennifer A., 2015. "A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 54-67.
    3. Niu Wei-Fang, 2013. "Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 421-438, September.
    4. Höök, Lars Josef & Lindström, Erik, 2016. "Efficient computation of the quasi likelihood function for discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 426-437.
    5. Møller, Jan Kloppenborg & Madsen, Henrik & Carstensen, Jacob, 2011. "Parameter estimation in a simple stochastic differential equation for phytoplankton modelling," Ecological Modelling, Elsevier, vol. 222(11), pages 1793-1799.

  13. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.

    Cited by:

    1. Loukianova, A. & Smirnova, E., 2015. "Strategic risk-management with the use of market risk indicator: A comparative longitudinal study in the emerging markets," Working Papers 6430, Graduate School of Management, St. Petersburg State University.
    2. Tsyplakov, Alexander, 2012. "Assessment of probabilistic forecasts: Proper scoring rules and moments," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 27(3), pages 115-132.

  14. Rossi, E. & Spazzini, F., 2010. "Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2786-2800, November.
    See citations under working paper version above.
  15. Riccardo Lucchetti & Eduardo Rossi, 2005. "Artificial regression testing in the GARCH-in-mean model," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 306-322, December.

    Cited by:

    1. Riccardo LUCCHETTI & Giulio PALOMBA, 2006. "Forecasting US bond yields at weekly frequency," Working Papers 261, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

  16. Eduardo Rossi & Claudio Zucca, 2002. "Hedging interest rate risk with multivariate GARCH," Applied Financial Economics, Taylor & Francis Journals, vol. 12(4), pages 241-251.

    Cited by:

    1. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    2. Zanotti, Giovanna & Gabbi, Giampaolo & Geranio, Manuela, 2010. "Hedging with futures: Efficacy of GARCH correlation models to European electricity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(2), pages 135-148, April.
    3. Panayiotis G. Artikis & Elena Kalotychou & Sotiris K. Staikouras, 2007. "Interest rate fluctuations and the UK financial services industry," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(5), pages 343-347.
    4. Abdulnasser Hatemi-J & Eduardo Roca, 2006. "Calculating the optimal hedge ratio: constant, time varying and the Kalman Filter approach," Applied Economics Letters, Taylor & Francis Journals, vol. 13(5), pages 293-299.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 19 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (12) 2009-01-03 2009-08-08 2009-08-16 2011-04-23 2012-11-11 2012-11-17 2012-11-24 2014-02-21 2014-09-29 2014-11-01 2015-01-31 2018-02-12. Author is listed
  2. NEP-ETS: Econometric Time Series (10) 2009-01-03 2009-08-08 2011-04-23 2012-11-17 2012-11-17 2012-11-24 2014-09-29 2015-01-31 2018-02-12 2019-11-11. Author is listed
  3. NEP-RMG: Risk Management (8) 2009-02-28 2011-10-09 2012-11-17 2012-11-24 2014-09-05 2014-09-29 2015-02-05 2019-11-11. Author is listed
  4. NEP-FOR: Forecasting (6) 2009-01-03 2009-08-16 2012-11-17 2012-11-24 2015-02-05 2019-11-11. Author is listed
  5. NEP-ORE: Operations Research (6) 2009-01-03 2014-02-21 2014-09-29 2015-01-31 2015-02-05 2019-11-11. Author is listed
  6. NEP-FMK: Financial Markets (2) 2009-02-28 2009-08-08
  7. NEP-MON: Monetary Economics (2) 2017-08-27 2018-02-12
  8. NEP-EEC: European Economics (1) 2009-02-28
  9. NEP-GER: German Papers (1) 2014-09-29
  10. NEP-MAC: Macroeconomics (1) 2017-08-27
  11. NEP-MST: Market Microstructure (1) 2012-11-17

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Eduardo Rossi should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.