IDEAS home Printed from https://ideas.repec.org/p/aah/create/2009-31.html
   My bibliography  Save this paper

A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility

Author

Listed:
  • Eduardo Rossi

    () (Dipartimento di economia politica e metodi quantitativi, University of Pavia, Italy.)

  • Paolo Santucci de Magistris

    (Dipartimento di economia politica e metodi quantitativi, University of Pavia, Italy)

Abstract

The no arbitrage relation between futures and spot prices implies an analogous relation between futures and spot volatilities as measured by daily range. Long memory features of the range-based volatility estimators of the two series are analyzed, and their joint dynamics are modeled via a fractional vector error correction model (FVECM), in order to explicitly consider the no arbitrage constraints. We introduce a two-step estimation procedure for the FVECM parameters and we show the properties by a Monte Carlo simulation. The out-of-sample forecasting superiority of FVECM, with respect to competing models, is documented. The results highlight the importance of giving fully account of long-run equilibria in volatilities in order to obtain better forecasts.

Suggested Citation

  • Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2009-31
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/09/rp09_31.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    3. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    4. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    5. James B. Wiggins, 1992. "Estimating the volatility of S&P 500 futures prices using the extreme‐value method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(3), pages 265-273, June.
    6. Bent Jesper Christensen & Paolo Santucci de Magistris, 2010. "Level Shifts in Volatility and the Implied-Realized Volatility Relation," CREATES Research Papers 2010-60, Department of Economics and Business Economics, Aarhus University.
    7. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
    8. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    9. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    12. Corbae, Dean & Ouliaris, Sam, 1988. "Cointegration and Tests of Purchasing Power Parity," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 508-511, August.
    13. Campbell, John Y & Shiller, Robert J, 1987. "Cointegration and Tests of Present Value Models," Journal of Political Economy, University of Chicago Press, vol. 95(5), pages 1062-1088, October.
    14. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    15. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    16. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    17. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    18. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    19. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    20. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1719-1760, December.
    21. Dwyer, Gerald P, Jr & Locke, Peter R & Yu, Wei, 1996. "Index Arbitrage and Nonlinear Dynamics between the S&P 500 Futures and Cash," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 301-332.
    22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    23. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    24. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    25. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    26. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    27. Cox, Charles C, 1976. "Futures Trading and Market Information," Journal of Political Economy, University of Chicago Press, vol. 84(6), pages 1215-1237, December.
    28. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    29. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    30. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    31. Chow, Ying-Foon & McAleer, Michael & Sequeira, John M, 2000. " Pricing of Forward and Futures Contracts," Journal of Economic Surveys, Wiley Blackwell, vol. 14(2), pages 215-253, April.
    32. Michael Dueker & Richard Startz, 1998. "Maximum-Likelihood Estimation Of Fractional Cointegration With An Application To U.S. And Canadian Bond Rates," The Review of Economics and Statistics, MIT Press, vol. 80(3), pages 420-426, August.
    33. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    34. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    35. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    36. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    37. Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
    38. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    39. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    40. Brenner, Robin J. & Kroner, Kenneth F., 1995. "Arbitrage, Cointegration, and Testing the Unbiasedness Hypothesis in Financial Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(01), pages 23-42, March.
    41. Joshy Jacob & Vipul, 2008. "Estimation and forecasting of stock volatility with range‐based estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 561-581, June.
    42. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    43. Davidson, James, 2002. "A model of fractional cointegration, and tests for cointegration using the bootstrap," Journal of Econometrics, Elsevier, vol. 110(2), pages 187-212, October.
    44. Michael A. Pizzi & Andrew J. Economopoulos & Heather M. O'Neill, 1998. "An examination of the relationship between stock index cash and futures markets: A cointegration approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(3), pages 297-305, May.
    45. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(03), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.

    More about this item

    Keywords

    Range-based volatility estimator; Long memory; Fractional cointegration; Fractional VECM; Stock Index Futures;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.