IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A model for vast panels of volatilities

  • Matteo Luciani

    ()

    (Université Libre de Bruxelles)

  • David Veredas

    ()

    (Université Libre de Bruxelles)

Realized volatilities, when observed over time, share the following stylised facts: comovements, clustering, long-memory, dynamic volatility, skewness and heavy-tails. We propose a dynamic factor model that captures these stylised facts and that can be applied to vast panels of volatilities as it does not suffer from the curse of dimensionality. It is an enhanced version of Bai and Ng (2004) in the following respects: i) we allow for longmemory in both the idiosyncratic and the common components, ii) the common shocks are conditionally heteroskedastic, and iii) the idiosyncratic and common shocks are skewed and heavy-tailed. Estimation of the factors, the idiosyncratic components and the parameters is simple: principal components and low dimension maximum likelihood estimations. A Monte Carlo study shows the usefulness of the approach and an application to 90 daily realized volatilities, pertaining to S&P100, from January 2001 to December 2008, evinces, among others, the following findings: i) All the volatilities have long-memory, more than half in the nonstationary range, that increases during financial turmoils. ii) Tests and criteria point towards one dynamic common factor driving the co-movements. iii) The factor has larger long-memory than the assets volatilities, suggesting that long–memory is a market characteristic. iv) The volatility of the realized volatility is not constant and common to all. v) A forecasting horse race against 8 competing models shows that our model outperforms, in particular in periods of stress.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/12/Fich/dt1230e.pdf
File Function: First version, September 2012
Download Restriction: no

Paper provided by Banco de Espa�a in its series Banco de Espa�a Working Papers with number 1230.

as
in new window

Length: 44 pages
Date of creation: Sep 2012
Date of revision:
Handle: RePEc:bde:wpaper:1230
Contact details of provider: Web page: http://www.bde.es/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  3. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  4. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2009. "Estimation and forecasting in large datasets with conditionally heteroskedastic dynamic common factors," Working Paper Series 1115, European Central Bank.
  5. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
  6. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2010. "Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets," Econometrics Working Papers Archive wp2010_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  7. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
  8. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  9. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  10. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
  11. Hautsch, Nikolaus & Kyj, Lada M. & Hautsch, Nikolaus, 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," CFS Working Paper Series 2009/20, Center for Financial Studies (CFS).
  12. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, School of Economics and Management, University of Aarhus.
  13. repec:eca:wpaper:2013/57645 is not listed on IDEAS
  14. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(03), pages 651-676, June.
  15. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  16. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  17. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  18. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  19. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
  20. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:1230. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mar�a Beiro. Electronic Dissemination of Information Unit. Research Department. Banco de Espa�a)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.