IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Generalized Dynamic Factor Models and Volatilities: Estimation and Forecasting

Listed author(s):
  • Matteo Barigozzi
  • Marc Hallin

In large panels of financial time series with dynamic factor structure on the levels or returns, the volatilities of the common and idiosyncratic components often exhibit strong correlations, indicating that both are exposed to the same market volatility shocks. This suggests, alongside the dynamic factor decomposition of returns, a dynamic factor decomposition of volatilities or volatility proxies. Based on this observation, Barigozzi and Hallin (2016) proposed an entirely non-parametric and model-free two-step general dynamic factor approach which accounts for a joint factor structure of returns and volatilities, and allows for extracting the market volatility shocks. Here, we go one step further, and show how the same two-step approach naturally produces volatility forecasts for the various stocks under study. In an applied exercise, we consider the panel of asset returns of the constituents of the S&P100 index over the period 2000–2009. Numerical results show that the predictors based on our two-step method outperform existing univariate and multivariate GARCH methods, as well as static factor GARCH models, in the prediction of daily high–low range—while avoiding the usual problems associated with the curse of dimensionality.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/200436/3/2015-22-BARIGOZZI_HALLIN-generalized.pdf
File Function: Full text for the whole work, or for a work part
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2015-22.

as
in new window

Length: 23 p.
Date of creation: Jun 2015
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/200436
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
  3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
  4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  6. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
  7. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
  8. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  9. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
  10. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  11. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
  12. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
  13. Ng, Victor & Engle, Robert F. & Rothschild, Michael, 1992. "A multi-dynamic-factor model for stock returns," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 245-266.
  14. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
  15. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(02), pages 336-363, April.
  16. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
  17. Aramonte, Sirio & Giudice Rodriguez, Marius del & Wu, Jason, 2013. "Dynamic factor Value-at-Risk for large heteroskedastic portfolios," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4299-4309.
  18. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
  19. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  20. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
  21. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  22. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
  23. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
  24. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
  25. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(1), pages 29-56, Winter.
  26. Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
  27. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  28. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  29. Matteo Luciani & David Veredas, 2015. "Estimating and Forecasting Large Panels of Volatilities with Approximate Dynamic Factor Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 163-176, April.
  30. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
  31. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  32. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  33. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
  34. Connor, Gregory & Korajczyk, Robert A. & Linton, Oliver, 2006. "The common and specific components of dynamic volatility," Journal of Econometrics, Elsevier, vol. 132(1), pages 231-255, May.
  35. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
  36. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  37. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
  38. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  39. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  40. repec:taf:jnlbes:v:30:y:2012:i:1:p:109-124 is not listed on IDEAS
  41. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
  42. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  43. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
  44. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  45. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  46. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
  47. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/200436. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.