IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v34y2015i3p163-176.html
   My bibliography  Save this article

Estimating and Forecasting Large Panels of Volatilities with Approximate Dynamic Factor Models

Author

Listed:
  • Matteo Luciani
  • David Veredas

Abstract

No abstract is available for this item.

Suggested Citation

  • Matteo Luciani & David Veredas, 2015. "Estimating and Forecasting Large Panels of Volatilities with Approximate Dynamic Factor Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 163-176, April.
  • Handle: RePEc:wly:jforec:v:34:y:2015:i:3:p:163-176
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    2. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    3. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    4. Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
    5. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    6. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    7. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    8. Mardi Dungey & Marius Matei & Matteo Luciani & David Veredas, 2017. "Surfing through the GFC: Systemic Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 93(300), pages 1-19, March.
    9. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    10. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    11. Chang, Ya-Ting & Gau, Yin-Feng & Hsu, Chih-Chiang, 2017. "Liquidity Commonality in Foreign Exchange Markets During the Global Financial Crisis and the Sovereign Debt Crisis: Effects of Macroeconomic and Quantitative Easing Announcements," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 172-192.
    12. Cipollini, Fabrizio & Gallo, Giampiero M., 2019. "Modeling Euro STOXX 50 volatility with common and market-specific components," Econometrics and Statistics, Elsevier, vol. 11(C), pages 22-42.
    13. Tobias Hartl, 2020. "Macroeconomic Forecasting with Fractional Factor Models," Papers 2005.04897, arXiv.org.
    14. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:34:y:2015:i:3:p:163-176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.